> 8.286 Lecture 8 October 1, 2013

DYNAMICS OF HOMOGENEOUS EXPANSION, PART IV

Summary: Mathematical Model

$t_{i} \equiv$ time of initial picture
$R_{\max , i} \equiv$ initial maximum radius
$\rho_{i} \equiv$ initial mass density
$\vec{v}_{i}=H_{i} \vec{r}$.

IITI

Summary: Equations

Want: $r\left(r_{i}, t\right) \equiv$ radius at t of shell initially at r_{i}
Find: $r\left(r_{i}, t\right)=a(t) r_{i}$, where

$$
\text { Friedmann }\left\{\begin{array}{l}
\ddot{a}=-\frac{4 \pi}{3} G \rho(t) a \\
\text { Equations } \\
H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{a^{2}} \quad \text { (Friedmann Eq.) }
\end{array}\right.
$$

and

$$
\rho(t) \propto \frac{1}{a^{3}(t)}, \text { or } \rho(t)=\left[\frac{a\left(t_{1}\right)}{a(t)}\right]^{3} \rho\left(t_{1}\right) \text { for any } t_{1} .
$$

Units: $[r]=$ meter, $\left[r_{i}\right]=$ notch, $[a(t)]=\mathrm{m} /$ notch, $[k]=1 /$ notch 2.
IIIT

Summary: Types of Solutions

$$
\dot{a}^{2}=\frac{8 \pi G}{3} \frac{\rho\left(t_{1}\right) a^{3}\left(t_{1}\right)}{a(t)}-k c^{2}
$$

For intuition, remember that $k \propto-E$, where E is a measure of the energy of the system.
Types of Solutions:

1) $k<0(E>0)$: unbound system. $\dot{a}^{2}>\left(-k c^{2}\right)>0$, so the universe expands forever. Open Universe.
2) $k>0(E<0)$: bound system. $\dot{a}^{2} \geq 0 \Longrightarrow$

$$
a_{\max }=\frac{8 \pi G}{3} \frac{\rho\left(t_{1}\right) a^{3}\left(t_{1}\right)}{k c^{2}}
$$

Universe reaches maximum size and then contracts to a Big Crunch. Closed Universe.
3) $k=0(E=0)$: critical mass density.

$$
H^{2}=\frac{8 \pi G}{3} \rho-\underbrace{\frac{k c^{2}}{a^{2}}}_{=0} \Longrightarrow \rho \equiv \rho_{c}=\frac{3 H^{2}}{8 \pi G}
$$

Flat Universe.
Summary: $\rho>\rho_{c} \Longleftrightarrow$ closed, $\rho<\rho_{c} \Longleftrightarrow$ open, $\rho=\rho_{c} \Longleftrightarrow$ flat. Numerical value: For $H=67.3 \mathrm{~km}-\mathrm{s}^{-1}-\mathrm{Mpc}^{-1}$ (Planck 2013 plus other experiments),

$$
\rho_{c}=8.4 \times 10^{-30} \mathrm{~g} / \mathrm{cm}^{3} \approx 5 \text { proton masses per } \mathrm{m}^{3} .
$$

Definition: $\Omega \equiv \frac{\rho}{\rho_{c}}$.
IIIIT =

Summary: Evolution of a Flat Universe

If $k=0$, then

$$
\begin{aligned}
& \left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho=\frac{\text { const }}{a^{3}} \quad \Longrightarrow \frac{d a}{d t}=\frac{\text { const }}{a^{1 / 2}} \\
& \quad \Longrightarrow \quad a^{1 / 2} a d a=\text { const } d t \quad \Longrightarrow \quad \frac{2}{3} a^{3 / 2}=(\text { const }) t+c^{\prime}
\end{aligned}
$$

Choose the zero of time to make $c^{\prime}=0$, and then

$$
a(t) \propto t^{2 / 3}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.286 The Early Universe

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

