8.321 Quantum Theory-I Fall 2017

Prob Set 1

- 1. (a) Show that the set of $N \times N$ matrices form a vector space of dimension N^2 .
 - (b) Show that $Tr(A^{\dagger}B)$ defines an inner product on this vector space.
 - (c) Show that any 2×2 matrix A may be written as

$$A = a_0 + i\vec{\sigma} \cdot \vec{a} \tag{1}$$

i.e the four 2×2 matrices $1, \vec{\sigma}$ provide a basis for the N = 2 case. Here $\vec{\sigma}$ are the three Pauli matrices. How can these matrices be used to form an orthonormal basis?

- (d) Express $a_0, a_i (i = 1, 2, 3)$ in terms of $Tr(A), Tr(\sigma_i A)$. Hence obtain a_0, a_i in terms of the matrix elements of A.
- 2. Prove the Schwarz's inequality $|\langle \psi | \phi \rangle|^2 \leq \langle \psi | \psi \rangle \langle \phi | \phi \rangle$ and the triangle inequality $||(\psi + \phi)|| \leq ||\psi|| + ||\phi||$ from the definition of the inner product. Here the norm of a vector is defined by $||\psi|| = \langle \psi | \psi \rangle^{\frac{1}{2}}$.
- 3. Sakurai Prob 1.5
- 4. Sakurai Prob 1.10
- 5. Prove that the trace of an operator $Tr(A) = \sum_i \langle \phi_i | A | \phi_i \rangle$ is independent of the particular orthonormal basis ϕ_i that is chosen for its evaluation.
- 6. Propose a low cost method for measuring Planck's constant \hbar with precision better than 10 percent. The goal of this problem is to review key experimental facts that lead to \hbar ; in answering the question please outline your method and provide a rough cost estimate.

MIT OpenCourseWare https://ocw.mit.edu

8.321 Quantum Theory I Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.