8.321 Quantum Theory-I Fall 2017

Midterm Quiz

Oct 18, 2017

Useful facts.

$$
\begin{equation*}
\int d u e^{-a u^{2}}=\sqrt{\frac{\pi}{a}} \tag{1}
\end{equation*}
$$

Ground state wave function of a 1d simple harmonic oscillator of mass m, frequency ω is

$$
\begin{aligned}
\psi_{0}(x) & =N_{0} e^{-\frac{x^{2}}{2 x_{0}^{2}}} \\
x_{0} & =\sqrt{\frac{\hbar}{m \omega}} \\
N_{0} & =\frac{1}{\pi^{\frac{1}{4}} \sqrt{x_{0}}}
\end{aligned}
$$

1. (25 points)

(a) We showed in class that Hermitian operators can always be diagonalized. Prove here that an anti-hermitian operator can always be diagonalized. What properties do its eigenvalues satisfy?
(b) For any unitary operator U show that the operators $U+U^{\dagger}$ and $U-U^{\dagger}$ commute with each other. Show that this implies that unitary operators can always be diagonalized.
(c) What properties do the eigenvalues of a unitary operator satisfy?
(d) If O is a Hermitian operator show that $e^{i O}$ is unitary.

2. $\mathbf{2 5}$ points

Consider a particle moving in one dimension with a potential $V(x)$; the Hamiltonian is

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V(x) \tag{2}
\end{equation*}
$$

Let $|n\rangle$ be the (normalized) energy eigenstates of H.
Now suppose the potential is changed suddenly at time $t=0$ so that the new Hamiltonian is

$$
\begin{equation*}
H^{\prime}=\frac{p^{2}}{2 m}+V(x-a) \tag{3}
\end{equation*}
$$

Let $\left|n^{\prime}\right\rangle$ be the energy eigenstates of H^{\prime}.
(a) Define an operator O_{a} such that $O_{a}|n\rangle=\left|n^{\prime}\right\rangle$ for all n. On general grounds what can you say about O_{a} ? Find an explicit expression for O_{a} in terms of the momentum operator p.
(b) Suppose that for $t<0$ the particle was in the ground state $|0\rangle$ of H. Assume that at $t=0^{+}$it stays in the same state. In terms of the operator O_{a} and the states $|n\rangle$, what is the probability that at $t=0^{+}$it is in the ground state $\left|0^{\prime}\right\rangle$ of H^{\prime} ?
(c) Re-express your answer for the probability in the previous part as an integral over momentum and the momentum space wavefunction $\langle p \mid 0\rangle$. Evaluate explicitly for the simple harmonic oscillator potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$.

3. (25 points)

A quantum particle with charge e and mass m moves in a time dependent electric field $E=E(t)$ in one dimension. The function $E(t)$ takes the values

$$
\begin{align*}
E(t) & =0 & & -\infty<t<0 \tag{4}\\
& =E_{0} & & 0 \leq t<t_{0} \tag{5}\\
& =0 & & t_{0}<t<\infty \tag{6}
\end{align*}
$$

Assume that at $t=-\infty$ the particle is in a momentum eigenstate with $p(t=-\infty)=p_{0}$.
(a) What is the expectation value $\langle p\rangle$ of the momentum at time $t=$ $+\infty$? What is $\left\langle(\Delta p)^{2}\right\rangle$ at $t=\infty$?
(b) Find the change in the expectation value of the energy between $t=\infty$ and $t=-\infty$.

4. Ramsey interference (25 points)

A powerful protocol for manipulating a two level system is a set-up known as a Ramsey interferometer. Consider an atom with two internal states which we label $|\downarrow\rangle$ (the ground state g) and $|\uparrow\rangle$ (the excited state e). These two states have an energy splitting that we denote $\hbar \omega_{0}$. The atom is initially in the ground state. The atom is then subject to an oscillating external field that causes transitions between the two internal levels. A suitable Hamiltonian to describe this system is

$$
\begin{equation*}
H_{0}=\frac{\hbar \omega_{0}}{2} \sigma^{z} \tag{7}
\end{equation*}
$$

The atom is initially in the ground state. The atom is then subject to a time dependent external field that adds a term $V(t)$ to the Hamiltonian of the form

$$
\begin{align*}
V(t) & =\frac{\hbar \Omega}{2}\left(\cos (\omega t) \sigma^{x}+\sin (\omega t) \sigma^{y}\right) & & 0<t<\tau \tag{8}\\
& =\quad 0 & & \tau<t<T+\tau \tag{9}\\
& =\frac{\hbar \Omega}{2}\left(\cos (\omega t) \sigma^{x}+\sin (\omega t) \sigma^{y}\right) & & T+\tau<t<T+2 \tau \tag{10}
\end{align*}
$$

(a) The time τ is chosen to correspond to what is known as a $\frac{\pi}{2}$ pulse. At the end of the first $\frac{\pi}{2}$ pulse suppose the atom is in the state $\frac{1}{\sqrt{2}}(|\downarrow\rangle+|\uparrow\rangle)$. If the atom were instead prepared in the excited state e at $t=0$ what state will it be in after the first $\frac{\pi}{2}$ pulse?
(b) Returning to the original situation where the atom is initially in the ground state, what state is it in at time $T+\tau$?
(c) Find the probability that at the end (i.e at time $t=T+2 \tau$), the atom is in the ground state g.

MIT OpenCourseWare
https://ocw.mit.edu

8.321 Quantum Theory I

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

