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Lecture 11 (Oct. 16, 2017)

11.1 Path Integrals

As we have seen, the amplitude for a state to “propagate” from coordinates (x, t) to (x′, t′) is given
by the propagator,

K
(
x′, t′ ~;x, t

)
=

ˆ
[Dx] eiS[x(t)]/ , (11.1)

where S[x(t)] is the classical action of the path x(t),

S[x(t)] =

ˆ
dt′ L x, x,˙ t′ , (11.2)

for L the classical Lagrangian. The integration in the

(
path in

)
tegral is over all possible paths x(t).

We need to define this precisely. In particular, we need to write a measure on the space of paths
in order to know how to properly integrate over all paths. The strategy will be to start with the
definition of K, and then derive the path integral and the appropriate definition of the measure.
Then we will go back and recompute K for a free particle.

The starting point of deriving the path integral is to use the composition law for K, which
comes from the composition law for the time-evolution operator. Recall that the propagator K is
the matrix element

K
(
x, t;x′, t′

From the composition law, we have

)
= 〈x|U

(
t′, t
)
|x〉 . (11.3)

N−1

K(xN , tN ;x0, t0) =

ˆ ∏
dxk K(xN , tN ;xN−1, tN−1) · · ·K(x1, t1;x0, t0)

k=1ˆ N∏−1
= dxk 〈xN |U(tN , tN 1)|xN (t− −1〉 · · · 〈x1|U 1, t0)|x0〉 (11.4)

k=1

=

ˆ N∏−1
~ ~dx xN |e−iεH/k 〈 |xN−1〉 · · · 〈x1|e−iεH/ |x0〉 ,

k=1

where ε = t/N . This expression holds in general for time-dependent Hamiltonians, if we understand
each occurrence of H in the expression above to be a function of the time.

We now consider a single matrix element in this expression,

〈xj+1|e−iεH/~|xj〉 = 〈 ~x iε
+1|e− (T+V )/
j |xj〉 , (11.5)

where
p2

T = , V = V (x) . (11.6)
2m

Note that

e−iε(T+V )/ iε(T + V )~ = 1−
~

− ε2(T + V )2 ~+ iεT

~2
· · · = e− / e−iεV/~ +O

2

Thus, if we take ε 0, N

(
ε2
)
. (11.7)

→ →∞ with Nε fixed, then we can use

e−iε(T+V )/~ −ε−→→0 e−iεT/~e−iεV/~ . (11.8)
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We can only make this replacement legally in this limit, as these two expressions differ at higher
orders.

We now choose ε small so that we can safely omit the O ε2 terms above. We then have

〈 ~ ε 0 2 ~ ~x | iεp
j e−iεH/ |x

(
+1 j〉 −−

→→ 〈xj+1|e− /2m e

)
−iεV/ |xj〉

(11.9)
= 〈x +1|e−iεp

2/2m~
j |xj〉e−iεV (xj)/~ .

We see then that we only have to evaluate the matrix element for a free particle. We can evaluate
this by inserting the resolution of the identity in the momentum basis, which results in taking a
Fourier transform:

〈 2
xj+1|e−iεp /2m~|xj〉 =

ˆ
dpj 〈

2
xj+1|pj〉〈pj |e−iεp /2m~|xj〉

=

ˆ
dpj
2π~

eipj(xj+1−xj)/~e−iεp
2
j/2m~

=

√
m

2πi~ε
e
im(xj+1−xj)

2

(11.10)

.
2~ε

This is the same result we found in the last lecture.
Thus, we have

〈xj+1|e−iεH/~|xj〉 −
ε−→→0

√
m

2πi~ε
e
i

[
m(xj+1−xj)

2

2~ε −
εV (xj)

~

]
. (11.11)

We then have ( m
K(xN , tN ;x0, t0) = lim

ε→0
N

Nε=
→∞
tN−t0

2πi~ε

)N/2 ˆ N−1∏
k=1

dxk e
i
∑N−1
j=0

[
m(xj+1−xj)

2

2~ε −
εV (xj)

~

]
. (11.12)

In the limit ε→ 0, we have
dx

xj+1 − xj ≈ ε , (11.13)
dt

which gives us
(xj+1 − xj)2

ε
≈ ε
(

dx 2

dt

)
. (11.14)

Thus,
N∑−1
j=0

[
m(xj+1 − xj)2

2~ε
− εV (xj)

~

]
ε→0−−→1

~

ˆ
dt

[
1

2
m

(
dx

dt

)2

− V (x)

]

=
1

(11.15)

x,
~

ˆ tN

dt L( x,˙ t) ,
t0

where L is the classical Lagrangian. This is the desired result. We now define the path integral
formally through the limiting process

ˆ
D iS[x(t)]/ m~[ x] e := lim

ε→0
N

Nε=
→∞
tN−t0

(
2πi~ε

)N/2 ˆ N−1∏
k=1

dxk e
i
∑N−1
j=0

[
m(xj+1−xj)

2

2~ε −
εV (xj)

~

]
. (11.16)

The factor in front of the product of integrals is required to make sure that the limit exists.
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Now we will recalculate the free particle propagator. Let us choose the number of steps to be
a power of two, N = 2n, and let us define

KN =

(
mN

2πi~t

)N/2 ˆ N−1∏
k=0

dxk e
imN (
2~t

∑
xj j+1−xj)2 . (11.17)

Again, we have ε = t/N . Expanding all of the squares, we see that∑
(xj+1 − xj)2 = x20 + 2x21 + 2x22 + · · ·+ 2x2N−1 + x2N

j

− 2x0x1 − 2x1x2 − · · · − 2xN x . (11.18)−1 N

We now carry out all of the odd integrals first, which will cause the problem to simplify. We find

KN =

ˆ
j

∏
k

(
n

dxj
even

ˆ ∏ m2
dxk

odd
2πi~t

)
e
im2n 2x2+x2 +x2 2xk(xk 1+xk+1)2~t [ k k−1 k+1− ]−

=

ˆ ∏ n

dxj

ˆ ∏ m2
dxk

j even k odd

(
2πi~t

)
e
im2n

2~t

[
2
(
xk−

xk−1+xk+1
2

)2
+ 1 x

2( 2 +x2k+1 k−1)−xk+1xk−1

]

=

(
m2n−1

2πi~t

)2n−2 ˆ 2n−1−1∏
`=0

dx2` e
im2n−1

(11.19)

1

~
∑ n2 − −1(x 2
`=0 2`+2 x

2 t
− 2`)

= KN/2 .

We see then that

K2n = K2n−1 = K2n−2 = · · · = K1 =

√
m

2πi~t
e
im (x 2
~ Nt

−x0)2 . (11.20)

Thus, we have recovered the expected result.
We can explicitly evaluate the path integral for any system in which the potential is at most

quadratic in x, ẋ. We will see several examples on the homework.
The path integral formulation seems unwieldy. Why does anyone bother with this? This is a

completely different way of formulating quantum mechanics than we have seen previously, but it
is completely equivalent to our other formulations, so what is the use? Feynman emphasized that
different formulations, even though they are mathematically equivalent, may each be useful for
describing different systems. Furthermore, we can use a given formulation to generalize quantum
mechanics, and the different formalisms may not be equivalent in these generalizations. Finally,
as Feynman says, it feels psychologically different to be thinking about the same physics from
a completely different perspective. In practice, path integrals are not usually a practical way of
solving problems. However, the path integral gives us quantum intuition, which allows us to say
many things about how systems will behave, even if we cannot solve them exactly.

11.1.1 Technical Details

For each time step, we wrote

〈xj+1|e−
iεm

iεH/~|xj〉 = e
−

2~

(
xj+1−xj

2

)
− iεV (x~ j) . (11.21)

It seems arbitrary that we wrote

e−iε(T+V )/~ ≈ e−iεT/~e−iεV/~ (11.22)
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instead of
e−iε(T+V )/~ ≈ e−iεV/~e−iεT/~ , (11.23)

in which case we would have had V (xj+1) in the exponent of Eq. (11.21) instead of V (xj). Either
is a pe(rfecetly good choice to the order at which we are working. A more symmetric choice is to

x
use V j+xj+1 .2

This choice

)
is very important for the particle in a magnetic field described by a vector potential

A (through B = ∇×A). In this system, the Lagrangian is

1
L =

2
mẋ2 + eA · dx

V
dt
− (x) . (11.24)

Here, in the quantum mechanical path integral we must use

A→ A

(
xj + xj+1

.
2

)
(11.25)

See the homework for more on this.
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