Lecture 19 (Nov. 15, 2017)

19.1 Rotations

Recall that rotations are transformations of the form $x_{i} \rightarrow R_{i j} x_{j}$ (using Einstein summation notation), where R is an orthogonal matrix, $R^{\mathrm{T}} R=\mathbb{1}$. This R is called a rotation matrix. For now, we will restrict to rotations R with $\operatorname{det} R=+1$ (orientation-preserving or proper rotations).

Every rotation R of space corresponds to a unitary operator $\mathcal{D}(R)$ on the Hilbert space, which satisfies

$$
\begin{equation*}
\mathcal{D}\left(R_{1}\right) \mathcal{D}\left(R_{2}\right)=\mathcal{D}\left(R_{1} R_{2}\right) . \tag{19.1}
\end{equation*}
$$

We will discuss this composition property more later. A quantum state transforms as $|\alpha\rangle \rightarrow\left|\alpha_{R}\right\rangle$ under this rotation, such that

$$
\begin{equation*}
\left|\alpha_{R}\right\rangle=\mathcal{D}(R)|\alpha\rangle \tag{19.2}
\end{equation*}
$$

For a vector operator V_{i}, with $i=1, \ldots, d$, we require

$$
\begin{equation*}
\left\langle\beta_{R}\right| V_{i}\left|\alpha_{R}\right\rangle=R_{i j}\langle\beta| V_{j}|\alpha\rangle . \tag{19.3}
\end{equation*}
$$

Expanding the transformed bra and ket, this is

$$
\begin{equation*}
\langle\beta| \mathcal{D}^{\dagger}(R) V_{i} \mathcal{D}(R)|\alpha\rangle=R_{i j}\langle\beta| V_{j}|\alpha\rangle . \tag{19.4}
\end{equation*}
$$

This is true for any states $|\alpha\rangle,|\beta\rangle$, which implies that the operators must be equal:

$$
\begin{equation*}
\mathcal{D}^{\dagger}(R) V_{i} \mathcal{D}(R)=R_{i j} V_{j} \tag{19.5}
\end{equation*}
$$

holds as an operator equation.
Consider the infinitesimal rotation $R=1-\omega$. The orthogonality condition, $R^{\mathrm{T}} R=\mathbb{1}$, then implies that $\omega^{\mathrm{T}}=-\omega$. Thus, ω is a real, antisymmetric matrix. We can then expand $\mathcal{D}(R)$ in the form

$$
\begin{equation*}
\mathcal{D}(R) \approx 1-\frac{i}{2 \hbar} \sum_{i j} \omega_{i j} J_{i j}+O\left(\omega^{2}\right) . \tag{19.6}
\end{equation*}
$$

This expansion identifies the objects $J_{i j}=-J_{j i}$ as the Hermitian generators of rotations. Note that the antisymmetry of $J_{i j}$ follows from the antisymmetry of $\omega_{i j}$.

Let us now specialize to three dimensions, $d=3$. In this case, we can write

$$
\begin{equation*}
\mathcal{D}(R)=1-\frac{i}{\hbar}\left(J_{12} \omega_{12}+J_{23} \omega_{23}+J_{31} \omega_{31}\right)+O\left(\omega^{2}\right) \tag{19.7}
\end{equation*}
$$

where we have used the antisymmetry of $J_{i j}$ to group terms. We define

$$
\begin{equation*}
J_{1}:=J_{23}, \quad J_{2}:=J_{31}, \quad J_{3}:=J_{12} \tag{19.8}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
J_{i}=\frac{1}{2} \epsilon_{i j k} J_{j k} \tag{19.9}
\end{equation*}
$$

where $\epsilon_{i j k}$ is the totally antisymmetric symbol with $\epsilon_{123}=+1$, known as the Levi-Civita symbol. We can similarly define

$$
\begin{equation*}
\theta_{1}:=\omega_{23}, \quad \theta_{2}:=\omega_{31}, \quad \theta_{3}:=\omega_{12} \tag{19.10}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\theta_{i}=\frac{1}{2} \epsilon_{i j k} \omega_{j k}, \quad \omega_{i j}=\epsilon_{i j k} \theta_{k} \tag{19.11}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\mathcal{D}(R)=1-\frac{i}{\hbar} \theta_{k} J_{k}+O\left(\theta^{2}\right) \tag{19.12}
\end{equation*}
$$

Note that

$$
\begin{equation*}
R_{i j}=\delta_{i j}-\epsilon_{i j k} \theta_{k}+O\left(\theta^{2}\right) \tag{19.13}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
x_{i} \rightarrow x_{i}^{\prime}=R_{i j} x_{j}=\left(\delta_{i j}-\epsilon_{i j k} \theta_{k}\right) x_{j}=x_{i}-\epsilon_{i j k} x_{j} \theta_{k} \tag{19.14}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{\theta} \times \boldsymbol{x} \tag{19.15}
\end{equation*}
$$

Thus, the meaning of $\boldsymbol{\theta}$ is that \boldsymbol{x} is rotated by an angle $|\boldsymbol{\theta}|$ about the $\boldsymbol{\theta}$-direction.
We now define J_{k} to be the components of the angular momentum. First, we will derive the commutation relations of J_{k} with any vector operator V_{i}. We start with the equation

$$
\begin{equation*}
\mathcal{D}^{\dagger}(R) V_{i} \mathcal{D}(R)=R_{i j} V_{j} \tag{19.16}
\end{equation*}
$$

and take $R=1-\omega$ with ω infinitesimal. The left-hand side then becomes

$$
\begin{equation*}
\left(1+\frac{i \theta_{k} J_{k}}{\hbar}\right) V_{i}\left(1-\frac{i \theta_{\ell} J_{\ell}}{\hbar}\right)=V_{i}+\frac{i \theta_{k}}{\hbar}\left[J_{k}, V_{i}\right] \tag{19.17}
\end{equation*}
$$

while the right-hand side becomes

$$
\begin{equation*}
R_{i j} V_{j}=V_{i}-\epsilon_{i j k} V_{j} \theta_{k} \tag{19.18}
\end{equation*}
$$

Thus, we conclude that

$$
\begin{equation*}
\left[J_{k}, V_{i}\right]=i \hbar \epsilon_{k i j} V_{j} \tag{19.19}
\end{equation*}
$$

We can then use a combination of rotations to deduce the angular momentum algebra, via

$$
\begin{equation*}
\mathcal{D}\left(R_{1}\right) \mathcal{D}\left(R_{2}\right)=\mathcal{D}\left(R_{1} R_{2}\right) \tag{19.20}
\end{equation*}
$$

In particular, this composition rule implies that

$$
\begin{equation*}
\mathcal{D}\left(R_{\phi}\right) \mathcal{D}\left(R_{\boldsymbol{\theta}}\right) \mathcal{D}\left(R_{\phi}^{-1}\right)=\mathcal{D}\left(R_{\phi} R_{\boldsymbol{\theta}} R_{\phi}^{-1}\right) \tag{19.21}
\end{equation*}
$$

The rotation $R_{\boldsymbol{\phi}} R_{\boldsymbol{\theta}} R_{\boldsymbol{\phi}}^{-1}$ can be written as a single rotation $R_{\boldsymbol{\theta}^{\prime}}$ for some $\boldsymbol{\theta}^{\prime}$. As $\boldsymbol{\theta}$ itself is a vector, for ϕ infinitesimal, we have

$$
\begin{equation*}
\boldsymbol{\theta}^{\prime}=\boldsymbol{\theta}+\boldsymbol{\phi} \times \boldsymbol{\theta} \tag{19.22}
\end{equation*}
$$

If we take $\boldsymbol{\theta}$ to be infinitesimal, we have

$$
\begin{equation*}
\mathcal{D}\left(R_{\boldsymbol{\theta}}\right)=1-\frac{i \theta_{k} J_{k}}{\hbar}+O\left(\theta^{2}\right) \tag{19.23}
\end{equation*}
$$

so (19.21) becomes

$$
\begin{equation*}
\theta_{k} \mathcal{D}\left(R_{\phi}\right) J_{k} \mathcal{D}\left(R_{\phi}^{-1}\right)=\theta_{k}^{\prime} J_{k} \tag{19.24}
\end{equation*}
$$

The left-hand side of this equation, for infinitesimal ϕ is

$$
\begin{equation*}
\theta_{k}\left(1-\frac{i \phi_{j} J_{j}}{\hbar}\right) J_{k}\left(1+\frac{i \phi_{\ell} J_{\ell}}{\hbar}\right)=\theta_{k} J_{k}-\frac{i \theta_{k} \phi_{j}}{\hbar}\left[J_{j}, J_{k}\right]+\cdots \tag{19.25}
\end{equation*}
$$

while the right-hand side is

$$
\begin{equation*}
\theta_{k} J_{k}+\epsilon_{j k \ell} \phi_{j} \theta_{k} J_{\ell}+\cdots, \tag{19.26}
\end{equation*}
$$

which leads us to conclude that

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \hbar \epsilon_{i j k} J_{k} . \tag{19.27}
\end{equation*}
$$

This is the angular momentum commutation algebra. Note that this matches the commutation relation for a vector operator with the angular momentum operator, so this shows that the angular momentum operator is a vector.

In general, we can write the angular momentum as

$$
\begin{equation*}
\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S} \tag{19.28}
\end{equation*}
$$

with $\boldsymbol{L}=\boldsymbol{x} \times \boldsymbol{p}$ is the orbital angular momentum and \boldsymbol{S} is an internal property that commutes with $\boldsymbol{x}, \boldsymbol{p}$, etc. We can check that \boldsymbol{L} on its own satisfies the angular momentum commutation algebra, so the operator \boldsymbol{J} will satisfy the angular momentum algebra if \boldsymbol{S} does. The operator \boldsymbol{S} is the spin operator.

If the Hamiltonian is rotationally invariant, then $\left[J_{i}, H\right]=0$, which implies that

$$
\begin{equation*}
\frac{\mathrm{d} J_{i}}{\mathrm{~d} t}=0 \tag{19.29}
\end{equation*}
$$

and so angular momentum is conserved.

19.1.1 Eigensystem of Angular Momentum

Let us now understand the implications of the commutation algebra

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \hbar \epsilon_{i j k} J_{k} \tag{19.30}
\end{equation*}
$$

You will show on the homework that

$$
\begin{equation*}
\left[\boldsymbol{J}^{2}, J_{i}\right]=0 . \tag{19.31}
\end{equation*}
$$

This means that we can diagonalize \boldsymbol{J}^{2} and one component of the angular momentum, say J_{z}, simultaneously. We can then label the eigenstates of J_{z} by $|j, m\rangle$, with

$$
\begin{equation*}
J^{2}|j, m\rangle=a|j, m\rangle, \quad J_{z}|j, m\rangle=b|j, m\rangle, \tag{19.32}
\end{equation*}
$$

for some eigenvalues a, b. The meanings of the values j and m will become apparent shortly.
It is useful to define the ladder operators

$$
\begin{equation*}
J_{ \pm}=J_{x} \pm i J_{y}, \tag{19.33}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
\left[J_{+}, J_{-}\right]=2 \hbar J_{z}, \quad\left[J_{z}, J_{ \pm}\right]= \pm \hbar J_{ \pm}, \quad\left[J^{2}, J_{ \pm}\right]=0 \tag{19.34}
\end{equation*}
$$

Using these commutation relations, we see that

$$
\begin{align*}
J_{z}\left(J_{ \pm}|j, m\rangle\right) & =\left(J_{ \pm} J_{z} \pm \hbar J_{ \pm}\right)|j, m\rangle \\
& =(b \pm \hbar)\left(J_{ \pm}|j, m\rangle\right) . \tag{19.35}
\end{align*}
$$

Thus, $J_{ \pm}|j, m\rangle$ is also an eigenstates of J_{z} with eigenvalue $b \pm \hbar$.

We can write

$$
\begin{align*}
\boldsymbol{J}^{2} & =J_{x}^{2}+J_{y}^{2}+J_{z}^{2} \\
& =J_{z}^{2}+\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right) \tag{19.36}\\
& =J_{z}^{2}+\frac{1}{2}\left(J_{+} J_{+}^{\dagger}+J_{-} J_{-}^{\dagger}\right),
\end{align*}
$$

which tells us that $\boldsymbol{J}^{2}-J_{z}^{2}$ is positive semi-definite,

$$
\begin{equation*}
\langle j, m| J^{2}-J_{z}^{2}|j, m\rangle \geq 0 \tag{19.37}
\end{equation*}
$$

This implies that $a-b^{2} \geq 0$ for all eigenstates. For a fixed a, this means that $|b|$ has a maximum value $b_{\max }$. This seems to be in conflict with the statement that we can use $J_{ \pm}$to raise or lower the eigenvalue arbitrarily. We conclude that at $b=+b_{\text {max }}$ the state must be annihilated by J_{+}, and similarly, at $b=-b_{\max }$ the state must be annihilated by J_{-}.

Call $|\max \rangle$ the state with $b=+b_{\text {max }}$. Then, we have

$$
\begin{equation*}
J_{+}|\max \rangle=0 \tag{19.38}
\end{equation*}
$$

which implies

$$
\begin{equation*}
J_{-} J_{+}|\max \rangle=0 \tag{19.39}
\end{equation*}
$$

Expanding the ladder operators, this becomes

$$
\begin{equation*}
\left(J_{x}-i J_{y}\right)\left(J_{x}+i J_{y}\right)|\max \rangle=\left(\boldsymbol{J}^{2}-J_{z}^{2}-\hbar J_{z}\right)|\max \rangle=0 . \tag{19.40}
\end{equation*}
$$

This gives us

$$
\begin{equation*}
a-b_{\max }^{2}-\hbar b_{\max }=0 \tag{19.41}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
a=b_{\max }\left(b_{\max }+\hbar\right) \tag{19.42}
\end{equation*}
$$

Repeating this argument for the state $|\min \rangle$ with $b=-b_{\max }$ yields the same result.
We now note that, because J_{+}increases the eigenvalue b, and this eigenvalue is bounded above by $b_{\text {max }}$, we must be able to reach $|\max \rangle$ from $|\min \rangle$ by repeatedly applying J_{+}. Say we can reach $|\max \rangle$ from $|\min \rangle$ by n applications of J_{+}. This implies that

$$
\begin{equation*}
b_{\max }=-b_{\max }+n \hbar, \tag{19.43}
\end{equation*}
$$

so

$$
\begin{equation*}
b_{\max }=\frac{n \hbar}{2}=j \hbar \tag{19.44}
\end{equation*}
$$

with $j \in \frac{1}{2} \mathbb{Z}$. We can then read off the eigenvalues for the state $|j, m\rangle$,

$$
\begin{equation*}
a=\hbar^{2} j(j+1), \quad b=m \hbar, \tag{19.45}
\end{equation*}
$$

and see that m can take any of the $2 j+1$ values $-j,-j+1, \ldots, j-1, j$.

MIT OpenCourseWare
https://ocw.mit.edu

8.321 Quantum Theory I

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

