Lecture 20 (Nov. 20, 2017)

20.1 Matrix Elements of Angular Momentum Operators

Assume that we have normalized $|j, m\rangle$. By definition, since these are eigenstates of \boldsymbol{J}^{2} and J_{z}, these operators are diagonal, with

$$
\begin{align*}
\left\langle j^{\prime}, m^{\prime}\right| \boldsymbol{J}^{2}|j, m\rangle & =j(j+1) \hbar^{2} \delta_{j j^{\prime}} \delta_{m m^{\prime}} \tag{20.1}\\
\left\langle j^{\prime}, m^{\prime}\right| J_{z}|j, m\rangle & =m \hbar \delta_{j j^{\prime}} \delta_{m m^{\prime}} .
\end{align*}
$$

Now we only need to compute the matrix elements of J_{x} and J_{y}. We will make use of the identity

$$
\begin{equation*}
\langle j, m| J_{+} J_{-}|j, m\rangle=\langle j, m| \boldsymbol{J}^{2}-J_{z}^{2}-\hbar J_{z}|j m\rangle=\hbar^{2}\left(j(j+1)-m^{2}-m\right) . \tag{20.2}
\end{equation*}
$$

We also know that

$$
\begin{equation*}
J_{+}|j, m\rangle=c_{j, m}^{(+)}|j, m+1\rangle . \tag{20.3}
\end{equation*}
$$

We still need to determine the coefficient $c_{j, m}^{(+)}$. Using $\underline{(20.2)}$ and $J_{-}=J_{+}^{\dagger}$, we see that

$$
\begin{equation*}
\left|c_{j, m}^{(+)}\right|^{2}=\hbar^{2}(j(j+1)-m(m+1))=\hbar^{2}(j-m)(j+m+1) \tag{20.4}
\end{equation*}
$$

We will choose (by convention) for $c_{j, m}^{(+)}$to be real and positive, which then gives us

$$
\begin{equation*}
J_{+}|j, m\rangle=\hbar \sqrt{(j-m)(j+m+1)}|j, m+1\rangle . \tag{20.5}
\end{equation*}
$$

A similar argument gives us

$$
\begin{equation*}
J_{-}|j, m\rangle=\hbar \sqrt{(j+m)(j-m+1)}|j, m-1\rangle . \tag{20.6}
\end{equation*}
$$

Packaging these results together, we have

$$
\begin{equation*}
\left\langle j^{\prime}, m^{\prime}\right| J_{ \pm}|j, m\rangle=\hbar \sqrt{(j \mp m)(j \pm m+1)} \delta_{j j^{\prime}} \delta_{m^{\prime}, m \pm 1} \tag{20.7}
\end{equation*}
$$

We see that when $m=+j$, the state is annihilated by J_{+}, and when $m=-j$, the state is annihilated by J_{-}, exactly as required.

We can now easily calculate the matrix elements of J_{x} and J_{y}, as they are linear combinations of $J_{ \pm}$. This allows us to explicitly write matrix representations of \boldsymbol{J} for fixed j. As an example, consider $j=1$. In this case,

$$
J_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \tag{20.8}\\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

where the basis is ordered as $m=+1,0,-1$. Using the matrix elements for $J_{ \pm}$, we can write down

$$
\begin{align*}
& J_{x}=\frac{J_{+}+J_{-}}{2}=\frac{\hbar}{2}\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
\sqrt{2} & 0 & \sqrt{2} \\
0 & \sqrt{2} & 0
\end{array}\right) \\
& J_{y}=\frac{J_{x}-J_{y}}{2 i}=\frac{\hbar}{2}\left(\begin{array}{ccc}
0 & -\sqrt{2} i & 0 \\
\sqrt{2} i & 0 & -\sqrt{2} i \\
0 & \sqrt{2} i & 0
\end{array}\right) . \tag{20.9}
\end{align*}
$$

For any fixed j, we can now also construct matrix elements of the finite rotation operator $\mathcal{D}(R)$. For a fixed j, the angular momentum operators are $(2 j+1) \times(2 j+1)$ Hermitian matrices, and so the rotation matrix $\mathcal{D}(R)$ will be $(2 j+1) \times(2 j+1)$ unitary matrices. Consider a rotation by angle θ about the axis $\hat{\boldsymbol{n}}$. First, we construct an infinitesimal rotation by $\delta \theta$ about the axis $\hat{\boldsymbol{n}}$:

$$
\begin{equation*}
\mathcal{D}\left(R_{\delta \theta}\right)=1-\frac{i}{\hbar}(\boldsymbol{J} \cdot \hat{\boldsymbol{n}}) \delta \theta+O\left(\delta \theta^{2}\right) \tag{20.10}
\end{equation*}
$$

We can then build up a finite rotation by multiplying infinitesimal rotations N times and taking $N \rightarrow \infty$,

$$
\begin{align*}
\mathcal{D}(R(\theta, \hat{\boldsymbol{n}})) & =\lim _{N \rightarrow \infty}(\mathcal{D}(\theta / N, \hat{\boldsymbol{n}}))^{N} \\
& =\lim _{N \rightarrow \infty}\left(1-\frac{i}{\hbar}(\boldsymbol{J} \cdot \hat{\boldsymbol{n}}) \frac{\theta}{N}+O\left((\theta / N)^{2}\right)\right)^{N} \tag{20.11}\\
& =e^{-i \theta \boldsymbol{J} \cdot \hat{\boldsymbol{n}} / \hbar}
\end{align*}
$$

20.2 Rotation Groups

In general, symmetry operations form a mathematical structure called a group.
Definition 1. A set $\left\{g_{i}\right\}:=G$ forms a group if there exists a multiplication operation \cdot such that:

- for all $g_{1}, g_{2} \in G, g_{1} \cdot g_{2} \in G$;
- multiplication is associative: for all $g_{1}, g_{2}, g_{3} \in G$,

$$
\begin{equation*}
\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right) \tag{20.12}
\end{equation*}
$$

- there exists $1 \in G$ such that

$$
\begin{equation*}
1 \cdot g=g \cdot 1=g \tag{20.13}
\end{equation*}
$$

- for every $g \in G$, there exists $g^{-1} \in G$ such that

$$
\begin{equation*}
g \cdot g^{-1}=g^{-1} \cdot g=1 \tag{20.14}
\end{equation*}
$$

For example, the set of 3×3 orthogonal matrices forms a group under the operation of matrix multiplication. This group is known as the orthogonal group $\mathrm{O}(3)$. If we restrict our attention to rotations with det $R=+1$, then we get a subgroup (a subset that is itself also a group under matrix multiplication) called the special orthogonal group $\mathrm{SO}(3)$.

There is another pertinent group to the discussion of rotations, which is the group of 2×2 unitary matrices satisfying $\operatorname{det} U=1$. Any matrix of this kind can be written in the form

$$
U(a, b)=\left(\begin{array}{cc}
a & b \tag{20.15}\\
-b^{*} & a^{*}
\end{array}\right)
$$

with $|a|^{2}+|b|^{2}=1$. Such matrices form a group under matrix multiplication, known as the special unitary group $\mathrm{SU}(2)$.

In quantum mechanics, rotations are represented by unitary operators $\mathcal{D}(R)$. These unitary operators must themselves form a group, because the product of two of these operators must give another, the composition is associative, there is an identity operation, and $\mathcal{D}\left(R^{-1}\right)$ is the inverse of $\mathcal{D}(R)$. In particular, we can see that the $\mathcal{D}(R)$ must satisfy the same group identities as the group of rotations R.

The matrix elements of $\mathcal{D}(R)$ are

$$
\begin{equation*}
\mathcal{D}_{m^{\prime}, m}^{(j)}(R)=\left\langle j, m^{\prime}\right| e^{-i \theta \boldsymbol{J} \cdot \hat{\boldsymbol{n}} / \hbar}|j, m\rangle \tag{20.16}
\end{equation*}
$$

Note that we have chosen the same j for both the bra and ket; this is because $\mathcal{D}(R)$ commutes with \boldsymbol{J}^{2}, so a rotation cannot change the value of \boldsymbol{J}^{2}. As a result, in the full ket space, the (infinitedimensional) matrix for $\mathcal{D}(R)$ is block diagonal in the (j, m) basis, where each block corresponds to one value of j. The block corresponding to j will be a $(2 j+1) \times(2 j+1)$ submatrix.

An explicit set of matrices that satisfies the same group identities as a group is called a (linear) group representation. Thus, the $\mathcal{D}(R)$ form a representation of $\mathrm{SO}(3)$. In particular, this representation is called a completely reducible representation, because it can be written in block diagonal form. Each block on the diagonal of $\mathcal{D}(R)$, taken as a standalone matrix $\mathcal{D}_{m^{\prime}, m}^{(j)}$ for fixed j, is an irreducible representation (sometimes referred to as an irrep), as it has no invariant subspaces.

Consider $j=1 / 2$. In this case, m and m^{\prime} take on the values $\pm \frac{1}{2}$. The rotation operator matrix elements are

$$
\begin{equation*}
\mathcal{D}_{m^{\prime}, m}^{(1 / 2)}(\theta, \hat{\boldsymbol{n}})=\left\langle m^{\prime}\right| e^{-i \theta \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}} / 2}|m\rangle \tag{20.17}
\end{equation*}
$$

That is, the rotation operators are

$$
\begin{align*}
\mathcal{D}^{(1 / 2)}(\theta, \hat{\boldsymbol{n}}) & =e^{-i \theta \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}} / 2} \\
& =\cos \frac{\theta}{2}-i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}) \sin \frac{\theta}{2} \tag{20.18}
\end{align*}
$$

Explicitly,

$$
\mathcal{D}^{(1 / 2)}(\theta, \hat{\boldsymbol{n}})=\left(\begin{array}{ll}
\cos \frac{\theta}{2}-i n_{z} \sin \frac{\theta}{2} & \left(-i n_{x}-n_{y}\right) \sin \frac{\theta}{2} \tag{20.19}\\
\left(-i n_{x}+n_{y}\right) \sin \frac{\theta}{2} & \cos \frac{\theta}{2}+i n_{z} \sin \frac{\theta}{2}
\end{array}\right)
$$

This may seem unusual, because this is an $\mathrm{SU}(2)$ matrix. The operators $\mathcal{D}^{(1 / 2)}(\theta, \hat{\boldsymbol{n}})$ form a representation of $\mathrm{SU}(2)$, even though we originally set out to find a representation of $\mathrm{SO}(3)$.

Rotations of 3D space can be characterized either by an $\mathrm{SO}(3)$ matrix R (a three-dimensional irrep) or by an $\mathrm{SU}(2)$ matrix U (a two-dimensional irrep). But $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$ are not in one-toone correspondence. Suppose we consider a rotation by $\theta=2 \pi$ along some axis $\hat{\boldsymbol{n}}$. For $\mathrm{SO}(3)$,

$$
\begin{equation*}
R(2 \pi, \hat{\boldsymbol{n}})=\mathbb{1}_{3} \tag{20.20}
\end{equation*}
$$

while for $\mathrm{SU}(2)$,

$$
\begin{equation*}
\mathcal{D}^{(1 / 2)}(2 \pi, \hat{\boldsymbol{n}})=e^{-i \pi \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}}=-\mathbb{1}_{2} \tag{20.21}
\end{equation*}
$$

The result is that for any spin- $\frac{1}{2}$ system, the phase of the wavefunction is rotated by π under a physical 2π rotation.

MIT OpenCourseWare
https://ocw.mit.edu

8.321 Quantum Theory I

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

