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Lecture 20 (Nov. 20, 2017)

20.1 Matrix Elements of Angular Momentum Operators

Assume that we have normalized |j,m〉. By definition, since these are eigenstates of J2 and Jz,
these operators are diagonal, with

〈j′,m′|J2|j,m〉 = j(j + 1)~2δjj′δmm′ ,
(20.1)

〈j′,m′|Jz|j,m〉 = m~δjj′δmm′ .

Now we only need to compute the matrix elements of Jx and Jy. We will make use of the
identity

〈j,m|J 2 2
+J |j,m〉 = 〈j,m|J − Jz − ~J− z|jm〉 = ~2 j(j + 1)−m2 −m . (20.2)

We also know that
| 〉 (+)

( )
J+ j,m = cj,m|j,m+ 1〉 . (20.3)

(+)
We still need to determine the coefficient cj,m. Using (20.2) and J = J†− +, we see that∣∣ 2(+)

cj,m

∣
= ~2(j(j + 1)−m(m+ 1)) = ~2(j −m)(j +m+ 1) . (20.4)

(+)
We will choose (by

∣
conv

∣∣
ention) for cj,m to be real and positive, which then gives us

J+|j,m〉 = ~
√

(j −m)(j +m+ 1)|j,m+ 1〉 . (20.5)

A similar argument gives us

J−|j,m〉 = ~
√

(j +m)(j −m+ 1)|j,m− 1〉 . (20.6)

Packaging these results together, we have

〈j′,m′|J±|j,m〉 = ~
√

(j ∓m)(j ±m+ 1)δjj′δm′,m 1 . (20.7)±

We see that when m = +j, the state is annihilated by J+, and when m = −j, the state is annihilated
by J , exactly as required.−

We can now easily calculate the matrix elements of Jx and Jy, as they are linear combinations
of J . This allows us to explicitly write matrix representations of J for fixed j. As an example,±
consider j = 1. In this case,

Jz = ~


1 0 00 0 0 , (20.8)
0 0 1


−

where the basis is ordered as m = +1, 0,−1. Using the matrix


elements for J , we can write down±

J+ + J
Jx =

−
2

=
~
2

 0
√

2 0√
2 0

√
2

0
√ ,

2 0


Jx

Jy =
− Jy
2i

=
~
2

 0 −
√

2i 0√
2i 0 −

√
√ 2i

0 2i 0

 .

(20.9)
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For any fixed j, we can now also construct matrix elements of the finite rotation operator D(R).
For a fixed j, the angular momentum operators are (2j + 1)× (2j + 1) Hermitian matrices, and so
the rotation matrix D(R) will be (2j+ 1)× (2j+ 1) unitary matrices. Consider a rotation by angle
θ about the axis n̂. First, we construct an infinitesimal rotation by δθ about the axis n̂:

iD(Rδθ) = 1− (J · n̂)δθ +O δθ2 . (20.10)
~

We can then build up a finite rotation by multiplying infinitesimal

( )
rotations N times and taking

N →∞,
D(R(θ, n̂)) = lim (

N→∞
D N(θ/N, n̂))

= lim
N→∞

(
i

1−
~

(J · n̂)
θ N

+O
(
(θ/N)2

N

))
(20.11)

= e−iθJ ·n̂/~ .

20.2 Rotation Groups

In general, symmetry operations form a mathematical structure called a group.

Definition 1. A set {gi} := G forms a group if there exists a multiplication operation · such that:

• for all g1, g2 ∈ G, g1 · g2 ∈ G;

• multiplication is associative: for all g1, g2, g3 ∈ G,

(g1 · g2) · g3 = g1 · (g2 · g3) ; (20.12)

• there exists 1 ∈ G such that
1 · g = g · 1 = g ; (20.13)

• for every g ∈ G, there exists g−1 ∈ G such that

g · g−1 = g−1 · g = 1 . (20.14)

For example, the set of 3× 3 orthogonal matrices forms a group under the operation of matrix
multiplication. This group is known as the orthogonal group O(3). If we restrict our attention to
rotations with detR = +1, then we get a subgroup (a subset that is itself also a group under matrix
multiplication) called the special orthogonal group SO(3).

There is another pertinent group to the discussion of rotations, which is the group of 2 × 2
unitary matrices satisfying detU = 1. Any matrix of this kind can be written in the form

U(a, b) =

(
a b

, (20.15)−b∗ a∗

)
with |a|2 + |b|2 = 1. Such matrices form a group under matrix multiplication, known as the special
unitary group SU(2).

In quantum mechanics, rotations are represented by unitary operators D(R). These unitary
operators must themselves form a group, because the product of two of these operators must give
another, the composition is associative, there is an identity operation, and D R−1 is the inverse of
D(R). In particular, we can see that the D(R) must satisfy the same group iden

(
tities

)
as the group

of rotations R.
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The matrix elements of D(R) are

D(j) ~(R) = 〈j,m′|e−iθJ ·n̂/ |j,mm′,m 〉 . (20.16)

Note that we have chosen the same j for both the bra and ket; this is because D(R) commutes with
J2, so a rotation cannot change the value of J2. As a result, in the full ket space, the (infinite-
dimensional) matrix for D(R) is block diagonal in the (j,m) basis, where each block corresponds
to one value of j. The block corresponding to j will be a (2j + 1)× (2j + 1) submatrix.

An explicit set of matrices that satisfies the same group identities as a group is called a (linear)
group representation. Thus, the D(R) form a representation of SO(3). In particular, this represen-
tation is called a completely reducible representation, because it can be written in block diagonal

(j)
form. Each block on the diagonal of D(R), taken as a standalone matrix D for fixed j, is anm′,m
irreducible representation (sometimes referred to as an irrep), as it has no invariant subspaces.

Consider j = 1/2. In this case, m and m′ take on the values ±1 . The rotation operator matrix2
elements are

D(1/2)
(θ, n̂) = 〈m′|e−iθσ·n̂/2 mm′,m | 〉 . (20.17)

That is, the rotation operators are

D(1/2)(θ, n̂) = e−iθσ·n̂/2

θ
= cos

2
− i(σ · n̂) sin

θ (20.18)
.

2

Explicitly,

D(1/2)(θ, n̂) =

(
cos θ2 − inz sin θ

2 (−inx − ny) sin θ
2

(−inx + ny) sin θ
2 cos θ2 + inz sin θ .

2

)
(20.19)

This may seem unusual, because this is an SU(2) matrix. The operators D(1/2)(θ, n̂) form a
representation of SU(2), even though we originally set out to find a representation of SO(3).

Rotations of 3D space can be characterized either by an SO(3) matrix R (a three-dimensional
irrep) or by an SU(2) matrix U (a two-dimensional irrep). But SO(3) and SU(2) are not in one-to-
one correspondence. Suppose we consider a rotation by θ = 2π along some axis n̂. For SO(3),

R(2π, n̂) = 13 , (20.20)

while for SU(2),
D(1/2)(2π, n̂) = e−iπσ·n̂ = −12 . (20.21)

The result is that for any spin-12 system, the phase of the wavefunction is rotated by π under a
physical 2π rotation.
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