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Lecture 3 (Sep. 13, 2017)

3.1 Even More Math

3.1.1 More on Matrix Representations

Last time, we described that in a given basis, there is an exact correspondence between n×nmatrices
and operators, where n is the dimension of the Hilbert space. Let {|a〉} form an orthonormal basis,
so that any state |α〉 can be expanded as

|α〉 =
∑
a

〈a|α〉|a〉 :=
∑

cαa
a

|a〉 . (3.1)

Similarly, any operator X can be expressed in the form

X = ai ai X aj aj . (3.2)
a

∑
| 〉〈 | | 〉〈 |

i,aj

In this basis, all of the information of the operator X is contained in the matrix

Xij = 〈ai|X|aj〉 . (3.3)

The terminology is that the Xij are matrix elements of X between states |ai〉 and |aj〉. As an exer-
cise, you can check that the matrix elements of the product operator XY are given by

∑
j XijYjk,

where Xij and Yjk are the matrix elements of the operators X and Y in some basis, respectively.
We define the trace of an operator A as

TrA =
∑

ai A ai = Aii . (3.4)
i

〈 | | 〉
∑
i

If the |ai〉 are chosen to be eigenvectors of A, then Aii = ai, so the trace becomes

TrA =
∑

ai . (3.5)
i

This is a statement of the familiar fact that the trace of an operator is the sum of its eigenvalues.

3.1.2 Unitary Transformations

Suppose we are given two orthonormal bases {|ai〉} and {|bi〉}. How are these bases related? We
can define an operator U by the action

U |ai〉 = |bi〉 . (3.6)

This implies that
〈bi| = 〈ai|U † , (3.7)

by definition of the adjoint.
Note that we can write

U = U1 = U
∑
i

|ai〉〈ai| =
∑
i

|bi〉〈ai| , (3.8)
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so the operator U is simply the sum of the outer products of corresponding vectors from each basis.
Then we have

U † =
∑
i

|ai〉〈bi| , (3.9)

from which we find that
UU † =

∑
|bi〉〈ai|aj〉〈bj

i,j

|

=
∑
i

|bi〉〈bi| (3.10)

= 1 .

Thus, we see that U is unitary. Unitary transformations are precisely those that transform from
one orthonormal basis to another.

Consider now a vector |α〉 and two distinct bases {|ai〉} and {|bi〉}. We can express |α〉 in two
ways as

|α〉 =
∑

ci
i

|ai〉 =
∑

di
i

|bi〉 . (3.11)

How are these two sets of coefficients {ci} and {di} related? Using the definition of U , we can write

|α〉 =
∑

dj
j

|bj〉

=
∑

djU
j

|aj〉 (3.12)

=
∑

dj
i,j

|ai〉〈ai|U |aj〉 .

Thus, we see that

cij =
∑
〈ai|U |aj〉dj = Uijdj , (3.13)

i,j

where we have introduced the shorthand notation in which repeated indices are assumed to be
summed over (from now on, we will explicitly state the cases when we are not using this convention).
Note that the Uij are simply the matrix elements of the operator U .

A similar approach can be used to show that for any operator that can be expressed in two
different bases as

X =
∑
|ai〉Xij〈aj | =

∑
|bk〉Yk` b

i

〈 `| , (3.14)
k`

the matrix elements in the two different bases are related by

Xij = UikYk`U`j
† . (3.15)

We leave the proof as an exercise.

3.1.3 Diagonalization of Hermitian Operators

Theorem 2. A Hermitian matrix Hij = 〈φi|H|φj〉 can always be diagonalized by a unitary trans-
formation.
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Proof. Consider a general orthonormal basis {|φi〉}, and let {|hi〉} be the orthonormal basis of
eigenstates of the operator H — such a basis exists because H is Hermitian. Because these are
both orthonormal bases, there exists a unitary transformation U such that |hi〉 = U |φi〉. Using this
operator, we can then write

δijhi = 〈hi|H|hj〉 = 〈φi|U †HU |φj〉 , (3.16)

where the first expression on the left is not summed over i. Thus, we see that Uik
† Hk`U`j is a

diagonal matrix. This completes the proof.

3.1.4 Simultaneous Diagonalization

Theorem 3. Two (diagonalizable) operators A,B are simultaneously diagonalizable if and only if
[A,B] = 0, where [·, ·] is the commutator.

Proof. Let there be a basis {|ai〉} for which the diagonalizable operators A,B have

A|ai〉 = ai|ai〉 , B|ai〉 = bi|ai〉 . (3.17)

This is a basis in which A and B are simultaneously diagonal. In this case, we see that

AB|ai〉 = aibi|ai〉 = BA|ai〉 , (3.18)

and so AB = BA. This proves the forward direction.
Now consider two diagonalizable operators A,B that commute, AB = BA, and let {|ai〉} be a

basis of eigenvectors of A,
A|ai〉 = ai|ai〉 . (3.19)

Then we have
A(B|ai〉) = AB|ai〉

= BA|ai〉
(3.20)

= Bai|ai〉
= ai(B|ai〉) ,

so B|ai〉 is an eigenket of A with eigenvalue ai. In general, this means that B is block diagonal
in the basis {|ai〉} (once we have ordered the basis so as to group eigenkets of A with the same
eigenvalue), with each block corresponding to a single eigenvalue of A. We can then diagonalize
B within each block, which will leave A diagonal, thereby simultaneously diagonalizing A and B.
Visually, we have a1 

 B1

aA

 .

a

=

 . . 1

 2

 B, B = 2 , (3.21) . . .


.

2

 a
. . .

 .




.




where the Bi are ki × ki blocks, with ki the number


of occurrences of the eigenvalue ai on the

diagonal of A. Diagonalizing the block Bi only mixes eigenkets of A with the same eigenvalue, so
we can diagonalize B while leaving A diagonal. This proves the backward direction.
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3.2 Measurement

Consider a quantum mechanical system. We know that the state of such a system consists of a
normalized state |ψ〉 ∈ H, and observables are represented by Hermitian operators acting in the
Hilbert space H. Recall the third postulate, regarding measurement:

a. The possible results of measuring A are the eigenvalues of ai of A.

b. Once a measurement is done, and the result is ai for some i, the system “collapses” to an
eigenket |ai〉 with a sharp value of A: if we perform a measurement again instantaneously,
we are guaranteed to get the same value as the first measurement.

c. The probability that a measurement gives the result A = ai is given by

Prob(A = ai) =
j:a

∑
|〈aj

j=a

|ψ〉|2

i

= ψ a (3.22)j aj ψ
j:a

∑
=a

〈 | 〉〈 | 〉
j i

= 〈ψ|Mai |ψ〉 ,

where we have defined the measurement operator

Mai :=
j:a

∑
=a

|aj〉〈aj | . (3.23)

j i

This operator is the projector onto the subspace with A = ai.

If we simplify to the case where there is only one eigenket with eigenvalue ai. Then

Prob(A = a 2
i) = |〈ai|ψ〉| . (3.24)

Historically, there has been a lot of worry about the collapse of the wavefunction. In the modern
language, there is a way to understand this collapse in a very palatable way, which we may discuss
later in the course.

The concept of measurement is worth pondering. Consider making a measurement on a state,
and then immediately making another measurement on it. Can we actually do this? Say our
measurement is to see if there is a photon hitting our detector. Prior to measurement, the state
consists of a detector and a photon. After measurement, there is a click, and the photon is gone.
How can we remeasure? We must separately consider measurements that destroy our state and ones
that do not. Measurements that do not destroy the state are called “non-demolition measurements.”

3.2.1 Comments

1. We have said that
Prob(A = ai) =

j:a

∑
|〈a 〉|2j |ψ . (3.25)

j=ai

This can only make sense if the value on the right-hand side is non-negative, and the sum of
these probabilities over all eigenvalues is 1. It is clear that the right-hand side is non-negative,
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as is the sum of non-negative numbers, and we see that∑
Prob(A = a 2

i) =
i

∑
j

|〈aj |ψ〉|

=
∑
〈ψ|aj〉〈aj ψ

j

| 〉
(3.26)

= 〈ψ|ψ〉
= 1 ,

because the state |ψ〉 is assumed to be normalized.

2. For any observable A and state |ψ〉, the expectation value of A is

〈A〉 :=
∑

ai Prob(A = ai)
ai

=
∑

ai
ai j:a

∑
ψ aj aj ψ (3.27)

j=a

〈 | 〉〈 | 〉
i

= 〈ψ|A|ψ〉 ,

where in the final line we have used

A =
∑

ai
a

|ai〉〈ai| . (3.28)

i

3.3 Spin-1
2
Systems

Consider a spin-1 system. The state space is spanned by the eigenstates of, for example, Sz. We2
denote the state with Sz ~= 2 by |+〉 and the state with Sz = −~ by |−〉. As a set, the Hilbert2
space is then

H =
{
|ψ〉 = c+|+〉+ ci|−〉

∣
c ∈ C, |c 2

+| + |c |2 = 1
}
. (3.29)± −

This is a subspace of the two-dimensional complex vector space C2.
The states |ψ〉 and eiλ|ψ R

∣
〉, for some λ ∈ , are physically equivalent by definition (the Hilbert

space is actually the space above quotiented by this equivalence relation), so the only physically
relevant phase information in a state is the relative phase of the coefficients (c+, c ). We can then−
parameterize these coefficients in the form

θ
c+ = cos

2
, c− = eiφ sin

θ
, (3.30)

2

with 0 ≤ θ < π and 0 ≤ φ < 2π. Specifying these two angles specifies the state exactly, and we note
that specifying these angles is equivalent to specifying a point on the surface of the unit sphere S2.
This parametrization of the Hilbert space is known as the Bloch sphere. For example, the north
pole of the Bloch sphere has c+ = 1, c = 0, and so represents the state ψ = + , while the south− | 〉 | 〉
pole has c+ = 0, c = 1, and so represents the state− |ψ〉 = |−〉.

We will now define several important operators in this space. The identity operator is

1 = |+〉〈+|+ |−〉〈−| , (3.31)

which can be represented by a matrix

1 =

(
1 0
0 1

)
. (3.32)
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Keep in mind that using an equals sign here is an abuse of notation, as the matrix representation
of an operator is formally distinct from the operator itself. The operator Sz is given by

Sz
~

=
2

(|+〉〈+| − |−〉〈−|) =
~σz

2
=

~ 1

2

(
0

0 −1

)
, (3.33)

where σz is the third Pauli matrix. Similarly, we can write

Sx
~

=
2

(|+〉〈−|+ |−〉〈+|) =
~σx

2
=

~
2

(
0 1
1 0

)
Sy =

−i~
2

(|+〉〈−| − |−〉〈+|) =
~σy

2
=

~
(3.34)

0

2

(
−i

i 0

)
.

We can check explicitly (left as an exercise) that these operators satisfy[
Sa, Sb

]
= i~εabcSc{ 2

Sa Sb
} ~

, =
2
δab1

S2 := SaSa =
3

(3.35)

~21
4

S2, Sa = 0 ,

where [·, ·] is the commutator, {·, is

[ ]
·} the anticommutator, and εabc is the totally antisymmetric

three-index tensor (known as the Levi–Civita symbol).
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