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Lecture 7 (Sep. 27, 2017)

7.1 Spin Precession In a Magnetic Field

Last time, we began discussing the classic example of precession of a spin-1 particle in a magnetic2
field. The Hamiltonian of this system is

ge
H = − S

2m
·B . (7.1)

With B = Bẑ, this becomes
ge

H = − SzB . (7.2)
2m

The energy levels are
ge~B

E =± ∓ , (7.3)
4m

giving a level splitting of

~ω =

∣∣∣ge~B∣ 2m

∣∣∣∣ . (7.4)

We define

ω :=
g|eB|

, (7.5)
2m

so that the Hamiltonian can be written simply as

H = ωSz . (7.6)

7.1.1 Schrödinger Picture

The time-evolution operator can be expressed in the energy eigenbasis (which coincides with the
Sz eigenbasis) as

~U(t, 0) = e−iHt/ = e−iωS
zt/~ . (7.7)

Suppose that we have an arbitrary initial state

|ψ〉 = c+|+〉+ c−|−〉 . (7.8)

Using the time-evolution operator, we find that

|ψ(t)〉 = U(t, 0)|ψ〉
= e−iωS

zt/~|ψ〉 (7.9)

= e−iωt/2c+|+〉+ eiωt/2c−|−〉 .

We now know the state of the system at all times. For example, if we initially have |ψ〉 = |+〉, then

|ψ(t)〉 = e−iωt/2|+〉 , (7.10)

which has
Prob

(
Sz ~= =2

)
1 (7.11)

for all times. This is why energy eigenstates are often called stationary states. Because time
evolution is generated by the Hamiltonian, energy eigenstates do not change under time evolution
(up to an unphysical overall phase).
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Consider instead the case where the initial state is the spin-up eigenstate of Sx, i.e.,

1|ψ〉 = √ (
2
|+〉+ |−〉) . (7.12)

Then we have
1|ψ(t)〉 = √ e−iωt/2 .
2

|+〉+ eiωt/2|−〉 (7.13)

Thus, after a time t we have

( )

Prob
(
Sx ~= 2 at time t

)
= |〈Sx

+|ψ(t)〉|2

=
1

(
2
| 〈+|+ 〈−|)|ψ(t)〉|2

= cos2
(
ωt

(7.14)

.
2

)
Similarly,

Prob
(
Sx = −~

2 at time t
)

= sin2

(
ωt

. (7.15)
2

We can check that this is true, but we know it must be true by conserv

)
ation of probability. We

then have
~〈Sx〉 =
2

[
cos2

(
ωt

2

)
− sin2

(
ωt

2

)]
=

~
cos(ωt) . (7.16)

2

We see that this oscillates as a function of time, with angular frequency ω, as we expect from our
classical intuition. What can we learn from this calculation? If we have a general initial state
represented by n̂ on the Bloch sphere, then n̂ will precess around B with angular frequency ω.
You will show this on the homework.

7.1.2 Heisenberg Picture

We can carry out this same calculation in the Heisenberg picture. In this picture, the states do
not change as a function of time, but rather the operators do. The spin operator in the Heisenberg
picture evolves according to the equation

S(t) = eiωS
zt/~Se−iωS

zt/~ . (7.17)

Taking the time derivative of this expression, we find

dS

dt
=
iω z
eiωS t/~[Sz,S]e−iωS

zt/~ . (7.18)
~

The z-component of this equation of motion is simple, because [Sz, Sz] = 0, so we have

dSz

= 0 . (7.19)
dt

The x-component is found using the fact that [Sz, Sx] = i~Sy, which gives

dSx

dt
=
iω iω ~e Szt/ i~Sye−iωS

zt/~ = −ωSy(t) . (7.20)
~

Similarly, using [Sz, Sy] = −i~Sx, we find

dSy

= ωSx(t) . (7.21)
dt
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We can write these three expression compactly in vector notation as

dS
= (7.22)

t
−ωS × ẑ .

d

This is the same equation as for classical spins, but the interpretation is entirely different because
S is now an operator. If we take the expectation value of each side of this expression, we will get
the same answers that we found in the Schrödinger picture.

7.2 Particle in a Potential

We have said, on general grounds, that time evolution is given by a unitary operator. Furthermore,
we have said that the infinitesimal form of this operator corresponds to a Hermitian operator, which
we have called the Hamiltonian. However, we must ask: how do we specify a quantum mechanical
system? There are two main ingredients we need: we have to first specify the Hilbert space that the
states live in, and then we have to specify the Hamiltonian. Either of these is insufficient without
the other.

For a particle in a potential, the Hilbert space is the space of square-integrable functions (modulo
magnitude and phase). In order to specify the Hamiltonian, we will simply take the classical
Hamiltonian and replace the variables x and p by the corresponding operators x and p. We must
be careful, because although the regular variables x and p commute, the corresponding operators
do not.

Suppose we have the Hamiltonian

p2
H = + V (x) . (7.23)

2m

How do we proceed? In the Schrödinger picture, we first find the energy eigenkets |j〉 and eigenvalues
Ej , which satisfy

H|j〉 = Ej |j〉 . (7.24)

Once we have found these eigenkets, we can expand an arbitrary state as

|ψ〉 =
∑

cj |j .
j

〉 (7.25)

Time evolution is carried out as

| ~ψ(t)〉 =
∑

c e−iEjt/
j |j .

j

〉 (7.26)

In principle, this is a complete procedure to determine the dynamics of any quantum system.
However, in practice this can often be very difficult.

In the Heisenberg picture, we simply care about the operators,

~ ~xH(t) = eiHt/ xe−iHt/ ,
(7.27)

pH(t) = eiHt/~pe−iHt/~ .

Using the Heisenberg picture equation of motion, we see that the operator xH evolves according to

dxH
dt

=
1

i~
[xH, H] =

1 p
x

i~

[ 2

H,
H

2m
+ V (xH)

]
=

1

i~

[
xH,

p2H
2m

]
. (7.28)
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From this point forward, we will drop the subscript H on the Heisenberg picture operators. Using
a commutator identity, we then have

dx 1
=

dt i~

[
x,

p2

2m

]
=

1

i~

([
x,

p

2m

]
p+ p

[
x,

p

2m

])
=

p

(7.29)

.
m

This is the expected result, but it is now an operator equation. Similarly, we find

dp

dt
=

1

i~
[p, V (x)]

=
1

i~

(
−i~ d d

(V (x)
dx

·) + V (x)i~
dx
·
)

= −dV

(7.30)

.
dx

Here, we have made clear the action of the derivative operator by using · to denote an arbitrary
position-space wavefunction on which these operators could act. Once again, this resembles the
classical expression, but is now an operator equation.

If we take the expectation values of Eqs. (7.29) and (7.30), we find

d〈x〉
dt

=
〈p〉
m

,

d〈p〉
dt

= −
〈

dV
(7.31)

.
dx

〉
This result is called Ehrenfest’s theorem. It is important, when using the second equation, to
remember to differentiate the potential first before taking the expectation value, because reversing
the order of these operators will often change the result.

7.2.1 Example: Charged Particle in a Uniform Electric Field

Consider a charged particle in a uniform electric field, which has the Hamiltonian

p2
H = x

2
− qE(t) . (7.32)

m

In the Schrödinger picture, this is a messy problem to solve. In the Heisenberg picture, however,
the problem is not difficult at all. Using Eq. (7.30), we have

dp
= qE(t) . (7.33)

dt

This has solution

p(t) = p(0) +

ˆ t

dt′ qE t
0

( ′) . (7.34)

Similarly, using Eq. (7.29), we have
dx

dt
=
p(t)

, (7.35)
m
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which yields
tp(0)

x(t)− x(0) =
m

+
q
ˆ t ′

dt′
ˆ t

dt′′ E t′′ . (7.36)
m 0 0

These are the same results we find classically. If E(t) = E is independen

( )
t of time, then we have

p(0)t
p(t) = p(0) + qEt , x(t) = x(0) +

m
+

q
Et2 . (7.37)

2m

7.2.2 Example: Simple Harmonic Oscillator

Recall the simple harmonic oscillator Hamiltonian,

p2
H =

2m
+

1
mω2x2 . (7.38)

2

We are likely all familiar with the approach in the Schrödinger picture. In the Heisenberg picture,
we have

dx

dt
=

p

m
,

dp
=

dt
−mω2x . (7.39)

Solving these equations gives

p(0)
x(t) = x(0) cos(ωt) + sin(ωt) ,

mω (7.40)
p(t) = −mωx(0) sin(ωt) + p(0) cos(ωt) .

Finding these equations in the Schrödinger picture is messy, though it can be done; in the Heisenberg
picture, the result was immediate.

Keep in mind that these are operator equations. If, for example, we square the operators x(t)
or p(t), we must be careful with the order of x(0) and p(0) in the cross terms, as these operators
do not commute.
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