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Lecture 8 (Oct. 2, 2017)

8.1 General Time Dependent Hamiltonians

The Schrödinger equation dictates that quantum states evolve in time according to

d
i~ ψ

t
| (t)〉 = H(t)|ψ(t)

d
〉 . (8.1)

In the last class, we saw that if the Hamiltonian is independent of time, H(t) = H, then we can
solve this differential equation as

| ~ψ(t)〉 = e−iHt/ |ψ(0)〉 . (8.2)

We are now interested in what happens if H has explicit time dependence.
We can always expand an infinitesimal time-evolution operator as

i
U(t+ dt, t) = 1− H(t) dt+ (dt)2 . (8.3)

~

From the composition rule for time evolution, we then have

( )

U(t+ dt, t0) = U(t+ dt, t)U(t, t0)

=

(
i

1−
(8.4)

H(t) dt

)
U(t, t

~ 0) .

We can rearrange this to give

i
U(t+ dt, t0)− U(t, t0) = − H(t) dtU(t, t

~ 0) . (8.5)

Dividing both sides by dt/i~ and taking the limit dt→ 0, this becomes

dU(t, t
i~ 0)

= H(t)U(t, t0) . (8.6)
dt

We now discuss solutions to Eq. (8.6) in several cases:

1. If H(t) = H, this result reduces to our previous result,

U(t, t ) = e−iH(t−t0)/~
0 . (8.7)

2. If [H(t), H(t′)] = 0 for all t, t′, then we can simultaneously diagonalize the Hamiltonian at all
times, meaning we can choose a basis of states that are eigenstates of H(t) for all time (the
associated eigenvalues may change as a function of time). We then have

i
U(t, t0) = exp

(
−

t

~

ˆ
dt′ H

t0

(
t′
))

. (8.8)

We can check that this is the correct expression by going to the diagonal basis of H(t) and
considering the action of U(t, t0) in this basis, or by differentiating the right-hand side to see
that it satisfies Eq. (8.6).
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3. In the most general case, [H(t), H(t′)] 6= 0. An example is a spin-1 particle in a magnetic2
field that changes orientation as a function of time. What can we say in this case?

We know that the Hamiltonian completely defines the time evolution for an infinitesimal time
step, and we know that we can build up finite time evolution from infinitesimal time evolution
using the composition law. We discretize time into N steps,

t0 < t1 < t2 < · · · < tN−1 < t , (8.9)

with
t

∆t = ti+1 − ti =
− t0

. (8.10)
N

We could choose each time interval to have a different length, but the ultimate result will not
be affected by our choice.

We take N large, so that ∆t is small. Then,

i
U(ti+1, ti) = 1− H(ti)∆t+O (∆t)2 . (8.11)

~

If we are ignoring terms of order (∆t)2, then we can write

( )

U(t , t ) ≈ e−iH(ti)∆t/~
i+1 i . (8.12)

We then build up the finite time-evolution operator as

N−1

U(t, t0) = U(t, tN−1)U(tN 1, tN 2) · · ·U(ti+1, ti) · · ·U(t1, t0) =
∏

U(ti+1, ti) . (8.13)− −
i=0

Note that the ordering of these operators is crucial, because these operators do not commute.
We must ensure that the operators are ordered so that later times are to the left. This
prescription for ordering of the operators is called time ordering, and the right-hand side of
Eq. (8.13) is called a time-ordered product.

We want to take the limit N → ∞,∆t → 0 with N∆t held fixed. Note that every term in
the product Eq. (8.13) is an exponential, and so we may be tempted to write the product
as the exponential of a sum of operators. We cannot do this, strictly speaking, because the
operators do not commute. However, we can invent notation, and formally write

i
U(t, t0) = T

[
exp

(
− ′
~

ˆ t

dt H t′

t0

)]
. (8.14)

This is called a time-ordered exponential, and is defined to

(
be

)
the product in Eq. (8.13) in the

limit N → ∞,∆t → 0 with N∆t held constant. The operator T is called the time-ordering
operator ; it reorders the operators in its argument so that they are time-ordered (disregarding
commutation rules when moving the operators around). What guarantees that this limit is
well-defined and exists? This is guaranteed because the operator U(t, t0) is well-defined, and
can be written as a composition of infinitesimal time evolution operators for any partition of
the time interval [t0, t].

An alternate approach is to solve Eq. (8.6) as a formal power series. We can integrate Eq. (8.6)
to reach ˆ t d

dt′

t0 dt

(
U
(
t′, t0

))
= − i

~

ˆ t

t0

dt′ H
(
t′
)
U
(
t′, t0

)
. (8.15)
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If we carry out the integration on the left-hand side, we find

ˆ t d
dt′

t0

(
U
(
t′, t0

))
= U(t, t0)− U(t0, t0) = U(t, t0)

dt
− 1 . (8.16)

Subtracting the 1 to the right-hand side of Eq. (8.15), we have

i
U(t, t0) = 1− ,

~

ˆ t

dt′ H t′ U t′ t0 . (8.17)
t0

This is an expression in terms of the Hamiltonian and

( )
time

(
-ev

)
olution operator at times t′

with t′ ≤ t. We can similarly write

U
( i
t′, t0

)
= 1−

ˆ t′

dt′′ H t′′ U t′′, t
~ 0 , (8.18)

t0

where the integrand is evaluated at values t′′ ≤ t .

( ) ( )
′ We can carry this process out an infinite

number of times and compose the results to give

i
U(t, t0) = 1−

~

ˆ t

t0

dt′ H
(
t′
)

+

(
− i
~

)2 ˆ t

t0

dt′
ˆ t′

t0

H
(
t′
)
H
(
t′′
)

+ · · ·

+

(
− i

t

t
~

) (8.19)n ˆ t 1

dt1

ˆ t1

d 2 · · ·
ˆ

n−

dtn H(t1) H(tn) + .
t0 t0 t0

· · · · · ·

Note that the operators in each integrand are time-ordered. This observation allows us to
write Eq. (8.19) in such a way that the limits of integration are not so complicated, using

ˆ t

dt′

t0

ˆ t′ 1
dt′′ H

t

(
t′ H

0

) (
t′′
)

=
2

ˆ t

t0

ˆ t

t0

T
[
H
(
t′
)
H
(
t′′
)]
. (8.20)

The factor of 1 here deals with overcounting. If we rewrite each term in Eq. (8.19) in a similar2
way, there will be a factor of 1 on the nth term to deal with overcounting. We then haven!

i
U(t, t0) = 1−

~

ˆ t

t0

dt1 H(t1) + · · ·

+
1

n!

(
− i

n

~

) (8.21)ˆ t

dt1
t0

ˆ t

dt2
t0

· · ·
ˆ t

dtn T[H(t1)
t0

· · ·H(tn)] + · · · .

This series is known as the Dyson series. This looks like the series expansion of an exponential,
with each term time-ordered. Thus, we have reproduced Eq. (8.14) with a different approach,

i
U(t, t0) = T

[
exp

(
− .
~

ˆ t

dt′ H t
t0

( ′))] (8.22)

8.2 Interaction Picture

We have seen the Schrödinger picture and the Heisenberg picture; now we will discuss a third
picture, due to Dirac, called the interaction picture. This is a mixed picture that is useful when we
can write the Hamiltonian in the form

H(t) = H0(t) + V (t) , (8.23)
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where we have a very good understanding of the dynamics under the Hamiltonian H0(t), and we
think of V (t) as a small perturbation to the system described by H0(t).

In the interaction picture, we remove the evolution due to H0 from the state by writing

|ψI(t)〉 = U−1
0 (t)|ψS(t)〉 , (8.24)

with U0(t) the time-evolution operator generated by H0. Contrast this with the expression in the
Heisenberg picture, where the states were defined as

|ψH(t)〉 = U−1(t)|ψS(t)〉 , (8.25)

The state |ψI(t)〉 evolves in time according to

d
i~ ψ

d
|ψI(t) )
t

〉 = VI(t | I(t)〉 , (8.26)

where
VI(t) = U0

−1(t)V (t)U0(t) . (8.27)

Operators in the interaction picture evolve according to

AI(t) = U−1
0 (t)AU0(t) . (8.28)

The interaction picture is useful when we fully understand the dynamics of H0, and V is a weak
probe. We can then use this approach to determine how quickly our system absorbs energy from
the weak probe. In the interaction picture, we are hiding the time evolution due to the system we
understand, so that we only see the time evolution coming from the unknown part of the system.

We can now derive the equation of motion for the time-evolution operator in the interaction
picture. We define

U(t) := U0(t)UI(t) , (8.29)

where UI(t) captures the time-evolution due to the perturbation. We know that the time-evolution
operator must satisfy

d
i~ U(t) = (H0 + V )U(t) . (8.30)

dt
By definition, U0(t) is the time-evolution operator in the system with Hamiltonian H0(t), so it
satisfies

d
i~ U0(t) = H0U0(t) . (8.31)

dt
We compute

d
i~

dt
U(t) = i~

d

dt
(U0UI) = i~

(
dU0

dt
UI + U0

dUI
.

dt

)
(8.32)

Using Eq. (8.31) on the first term of the right-hand side yields

d
i~

dt
U(t) = H0U0UI + i~U0

dUI

dt
= H0U + i~U0

dUI
. (8.33)

dt

On the other hand, from Eq. (8.30), we have

d
i~ U(t) = H0U + V U . (8.34)

dt

Thus,
dU

i~ I
U0 = V U = V U0UI , (8.35)

dt
which gives us

dU
i~ I

dt
= U−1

0 V U0UI = VI(t)UI(t) . (8.36)
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