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8.324 Quantum Field Theory II 

Problem Set 7 Solutions 

1. (a) Changing the variable λ̄ = λ̄(λ) we can find β̄ using the chain rule of differentiation. We find, 

β̄(λ̄) = µ 
dλ̄ 
dµ 

= µ 
dλ 
dµ 

dλ̄ 
dλ 

= β(λ) 
dλ̄ 
dλ 

. 

Thus β transforms like a contravariant vector. For example, recall how in GR V µ transforms like 

V �µ(x�) = V α(x) 
∂x�µ 

∂xα 
. 

(1) 

(2) 

(b) Using (1), together with 

λ̄ = λ + a2λ
2 + a3λ

3 + ... (3) 

and 

β = b2λ
2 + b3λ

3 + b4λ
4 + ... , (4) 

we find 

β̄ = (b2λ
2 + b3λ

3 + b4λ
4 ..)(1 + 2a2λ + 3a3λ

2 + ...) , (5) 

which to fourth order gives 

β̄ = b2λ
2 + (b3 + 2a2b2)λ

3 + (b4 + 2a2b3 + 3a3b2)λ
4 + O(λ5) . 

We must express β̄ in terms of λ̄. Instead of finding λ in terms of λ̄ we calculate 

λ̄2 = λ2 + 2a2λ
3 + (2a3 + a 2 

2)λ
4 + . . . 

λ̄3 = λ3 + 3a2λ
4 + .. 

λ̄4 = λ4 . 

and recalling that β̄ = b̄2 ̄λ
2 + ̄b3 ̄λ

3 + ̄b4 ̄λ
4 + . . . we find that 

(6) 

(7) 

b̄2 = b2, b̄3 = b3 , and b̄4 = b4 − a2b3 + a3b2 − a 2 
2b2 . 

so that we can make b̄4 anything we want by tweaking the as. 

The fixed point of a renormalization flow is defined by β(λf ) = 0 which implies β̄(λ̄f ) = 0 (if 
exist, which we assume). Finally 

β̄�(λ̄) = 
d 

dλ̄ 

� 
β(λ) 

dλ̄ 
dλ 

� 
= 

d 
dλ 

� 
β(λ) 

dλ̄ 
dλ 

� dλ 

dλ̄ 
= β�(λ) + β(λ) 

dλ 

dλ̄ 

d2 ̄λ 
dλ2 

. 

dλ̄ 
dλ 

(8) 

and dλ 
dλ̄ 

(9) 

so that, at a fixed point 

β̄�(λ̄f ) = β�(λf ) . (10) 

(c) We have 

µ 
dg 
dµ 

= −bg2 − cg 3 − dg4 + . . . . (11) 

For convenience, redefining the coupling and the scale


λ ≡ bg , and t ≡ log(µ/µ1) , (12)




� � + 

� � 

� � 

� � 

� � �� 

� � 

� 

2 

we rewrite the differential equation as 

dλ c d 
dt 

= −λ2 − 
b2 
λ3 − 

b3 
λ4 − . . . . (13) 

We then rearrange as 

dλ 1 dλ c dλ 
dt = − (14)+ . . . = −

dλ2 λ2 b2λ2 + . . . c λ1 + λ +2 3b b

This equation can be integrated to yield 

1 c 
t = constant + + ln λ + O(λ) + .. , (15)

λ b2 

where the constant is independent of t (i.e. µ). This means that the constant is RG invariant. Rewriting 
the result in the original variables, and absorbing ln µ1 into the definition of the constant, we have 

1 c 
ln µ = constant + + log[bg(µ)] + O(g(µ)) . (16)

bg(µ) b2 

Setting the constant equal to the RG invariant scale Λ, we get 

µ 1 c 
ln = + log[bg(µ)] + O(g(µ)) . (17)

Λ bg(µ) b2 

= β g(µ), m1(d) In a generic QFT one would have β where m1 is a parameter of the theory with , . . . µ

[m1] = 1. Contrary to the most general form, in a theory without mass parameters, we have 

dg
β(g) = µ (18)

dµ 

which implies 

dg dµ 
= (19)

β(g) µ 

integrating both sides give some function of g on the left (which contains no dimensionful parameters), and 
a log with a universal constant scale of integration on the right giving 

µ
F (g) = log (20)

Λ


Inverting this relation gives that g is some function of the log, i.e.


µ 
g = f log . (21)

Λ 

2. The Lagrangian is 

L = − 
2

1
(∂φ0)

2 − 
2

1 
m0

2φ2
0 + 

g

6 
0 
φ0
6 

1 1 A B gµ 2 C2gµ 
(∂φ)2 m 2φ2 + φ6 − (∂φ)2 2φ2 φ6 (22)+= − − − m 

2 2 6 2 2 6 

with 

2 (1 + A)− 2 (1 + C) 

Thus to calculate the beta function, we need only calculate A and C. This involves calculating the momentum 
dependent part of the two point function, and the three point function. Both of these relevant computations 

3 
g0 = gµ (23) 
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have been done in class and/or in previous problem sets. In class, we found that the two point function was 
(with D = m2 + x(1 − x)p2) 

g2µ�Γ(2 − d ) 
� 1 

2 
d 

1 − Ap2 − m 2Bdx= d 
D2−2 22(4π) 0 � 1α 

D dx − Ap2 − Bm2= finite − 
� 0 

= finite or p independent − 
αp2 

− Ap2 (24)
6� 

thus A = − α in a minimal subtraction scheme. Similarly, in the previous homework we found that the three 6� 
point function was 

2α 
= g + gC + finite + g dx dy dz δ(x + y + z − 1) 

α 
= finite + g C + (25) 

thus in MS, C = − α� . To lowest non trivial order 

3α α− 2 
1 − 1 −2 

� 
2 

g0 = gµ 

= gµ 

6� 
3α 

1 − 
4� 

(26) 

Using the scale independence of bare quantities, we log differentiate each side, which gives 

9α g� 3α 
20 = βgµ 1 − 1 − 

4� 
(27)+ 

4� 2 

Multiplying by (1 + 9α 
4� ) and taking the � → 0 limit gives 

βg = − 
3 
4 
αg (28) 

Using the chain rule and the definition of α gives 

βα = − 
3 
2 
α2 + O(α3) (29) 

which implies that the theory is asymptotically free. 

3. (a) We have 

L = 
1 
2 

� 
(∂φ1)

2 + (∂φ2)
2
� 
− 

λ 
4! 
(φ4 

1 + φ4 
2) − 

2ρ 
4! 

(φ2 
1φ

2 
2) (30) 

We can use most of the results we have derived previously in the course with regard to φ4 theory,the only 
subtlety here is with symmetry factors. Once again each λ vertex comes with a factor of −iλ. However, 
because there are fewer combinatorial symmetries, each ρ vertex comes with a factor of −i4 2ρ = −i ρ 

4! 3 . 
Let us renormalize the λ vertex. For concreteness, consider φ1 external lines (it does not matter which). 
We will have s, t, u channel contributions with both types of particles running in the loop. The result will 
give something like PS (10.21) 

ρ2 

= −iλ − i(λ2 + )(V (t) + V (s) + V (u)) − iδλ (31)
9 

All V s have the same infinite part in dimensional regularization (see eg PS (10.23)) 

1 
V ∼ − 

16π2� 
+ finite (32) 
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which implies, in the MS scheme 

ρ2 3 
δλ = λ2 + (33)

9 16π2� 

We thus have (there is no wavefunction renormalization coming from the two point function at one-loop 
order) 

λ0 = µ �(λ + δλ) 

ρ2 3 
= µ � λ + λ2 + (34)

9 16π2� 

which implies 

ρ2 3 2 3 
0 = βλ(1 + 2λ) + � λ + λ2 + + ρβρ (35)

9 16π2� 9 16π2� 

Rearranging, and using the fact that the beta functions are O(λ, ρ), to lowest order this implies 

ρ2 3 2 3 
λ + + ρβρ (36)βλ = −� −λ2 

9 16π2� 
− 

9 16π2� 

We now calculate the renormalization of ρ. Two of the loop diagrams are O(λρ) and have one type of 
particle running in the loop. The other two are O(ρ2) and have two types of particles in the loop. We must 
multiply these last two diagrams by a factor of two to account for the change in symmetry factor. In total 
we get 

λρ ρ2 δρ
= finite − i 2V − i 4V − i 

3 9 3 

= finite − 
3

2 
iλρ − 

16

1 
π2� 

− iρ2 4

9 
− 
16

1 
π2� 

− i
δ

3 
ρ 

(37) 

which implies, in the MS scheme 

λρ ρ2 

δρ = + 
8π2� 12π2� 

ρ0 = ρµ� 1 + 
ρ

λ +
2 
ρ (38)

8π2� 3 

Once again, differentiating and manipulating to lowest order, we get 

1 2 1 
βρ = −�ρ 1 + 

8π2� 
− 
3 
ρ − ρβλ 

8π2� 
(39) 

Substituting (39) into (36) to lowest order and taking the � 0 limit gives → 

3 ρ2 

βλ = λ2 + (40)
16π2 9 

substituting in the opposite way gives 

βρ =
1 

λρ +
2 
ρ2 (41)

8π2 3 

(b) Using the chain rule, we get 

1 
β ρ = 

λ2 
(βρλ − βλρ)

λ � �� �λ ρ ρ ρ 
= − 

λ 
− 3 

λ 
− 1 (42)

48π2 λ 
which has zeros at ρ/λ = {0, 1, 3}. We wrote the result in this form, because stability implies that λ > 0, 
while it is harder to say anything definite about the sign of ρ. This beta function is positive for ρ/λ < 0 
and for 1 < ρ/λ < 3, and negative elsewhere which implies that ρ/λ = 1 is an IR stable fixed point, while 
the others are IR unstable. (For negative ρ/λ < 0 we flow to strong coupling, where perturbation theory 
isn’t controlled anymore.) Thus, if we start with the 0 < ρ/λ < 3 it will flow to this fixed point, while 
ρ/λ > 3, the coupling will flow away to infinity. 
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(c) We have already established the existence of these fixed points; only the asymptotically symmetric one is 
IR stable. In 4 − � dimensions, we can read off the beta functions from above (before taking the � 0→
limit) 

ρ2 3 
βλ = −�λ + λ2 + (43)

9 16π2 

βρ = −�ρ +
1 

λρ +
2 
ρ2 (44)

8π2 3 

Your sketch should involve a simultaneous plot of λ and ρ, or a line of ρ/λ with some arrows to indicate 
the flow to the IR. At finite but small �, you should find that there is a stable IR fixed point at finite ρ, λ. 
In my plot the fixed points are (obtained from the zeros of the β functions): 

λA = 0 ρA = 0 A is IR unstable (45) 

16π2 

λB = � ρB = 0 B has one unstable direction (46)
3


8π2


λC = � ρC = 8π2� C has one unstable direction (47)
3


24π2 24π2


λD = � ρD = � D is IR stable. (48)
5 5 

We conclude that we get an emergent O(2) symmetry asymptotically in the IR, if we start from the 
appropriate parameter range. The basin of attraction is called universality class in the statistical physics 
literature. By tuning we can get a large range of energy, where the fixpoints B or C determine the behavior 
of the theory. There are other universality classes in this space of couplings that we cannot explore with 
the � expansion techniques, as they lie in the strong coupling regime of the theory. 
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FIG. 1. The RG flow of the theory. 
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