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8.334: Statistical Mechanics II Problem Set # 1 Due: 2/20/08


Phase transitions


1. Critical behavior of a gas: The pressure P of a gas is related to its density n = N/V , 

and temperature T by the truncated expansion 

b 2 c 3P = kBTn − n + n ,
2 6 

where b and c are assumed to be positive, temperature independent constants. 

(a) Locate the critical temperature Tc below which this equation must be invalid, and 

the corresponding density nc and pressure Pc of the critical point. Hence find the ratio 

kBTcnc/Pc. 

(b) Calculate the isothermal compressibility κT = − 1 ∂V 
� , and sketch its behavior as a V ∂P T

function of T for n = nc. 

(c) On the critical isotherm give an expression for (P − Pc) as a function of (n − nc). 

(d) The instability in the isotherms for T < Tc is avoided by phase separation into a liquid 

of density n+ and gas of density n−. For temperatures close to Tc, these densities behave 

as n± ≈ nc (1 ± δ). Using a Maxwell construction, or otherwise, find an implicit equation 

for δ(T ), and indicate its behavior for (Tc − T ) → 0. (Hint: Along an isotherm, variations 

of chemical potential obey dµ = dP/n.) 

(e) Now consider a gas obeying Dieterici’s equation of state: 

a 
P (v − b) = kBT exp − ,

kBTv 

where v = V/N . Find the ratio Pv/kBT at its critical point. 

(f) Calculate the isothermal compressibility κT for v = vc as a function of T − Tc for the 

Dieterici gas. 

(g) On the Dieterici critical isotherm expand the pressure to the lowest non-zero order in 

(v − vc). 

******** 

2. Magnetic thin films: A crystalline film (simple cubic) is obtained by depositing a 

finite number of layers n. Each atom has a three component (Heisenberg) spin, and they 

interact through the Hamiltonian 

n n−1 

−βH = JH~s 
α · ~sj

α + JV ~s 
α · ~s α+1 .i i i 

α=1 <i,j> α=1 i 
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(The unit vector ~si
α indicates the spin at site i in the αth layer. The subscript < i, j > 

indicates that the spin at i interacts with its 4 nearest-neighbors, indexed by j on the square 

lattice on the same layer.) A mean–field approximation is obtained from the variational 

density ρ0 ∝ exp (−βH0), with the trial Hamiltonian 

n 

−βH0 = ~h α · ~si
α . 

α=1 i 

(Note that the most general single–site Hamiltonian may include the higher order terms 

Lα
c1,···,cp 

sα
c1 
· · · sα

c1 
, where sc indicates component c of the vector ~s.) 

(a) Calculate the partition function Z0 
~h α , and βF0 = − lnZ0. 

(b) Obtain the magnetizations mα = �〈~si
α〉

0 
�, and 〈βH0〉0, in terms of the Langevin func

tion L(h) = coth(h) − 1/h. 

(c) Calculate 〈βH〉
0
, with the (reasonable) assumption that all the variational fields 

~h α are parallel. 

(d) The exact free energy, βF = − lnZ, satisfies the Gibbs inequality (see below), βF ≤ 

βF0 + 〈βH− βH0〉0. Give the self-consistent equations for the magnetizations {mα} that 

optimize βH0. How would you solve these equations numerically? 

(e) Find the critical temperature, and the behavior of the magnetization in the bulk by 

considering the limit n → ∞. (Note that limm→0 L
−1(m) = 3m + 9m3/5 + O(m5).) 

(f) By linearizing the self-consistent equations, show that the critical temperature of film 

depends on the number of layers n, as kTc(n ≫ 1) ≈ kTc(∞) − JV π
2/(3n2). 

(g) Derive a continuum form of the self-consistent equations, and keep terms to cubic order 

in m. Show that the resulting non-linear differential equation has a solution of the form 

m(x) = mbulk tanh(kx). What circumstances are described by this solution? 

(h) How can the above solution be modified to describe a semi–infinite system? Obtain 

the critical behaviors of the healing length λ ∼ 1/k. 

(i) Show that the magnetization of the surface layer vanishes as |T − Tc|. 

The result in (f) illustrates a quite general trend that the transition temperature 

of a finite system of size L, approaches its asymptotic (infinite–size) limit from below, 

as Tc(L) = TC(∞) − A/L1/ν , where ν is the exponent controlling the divergence of the 

correlation length. However, some liquid crystal films appeared to violate this behavior. 

In fact, in these films the couplings are stronger on the surface layers, which thus order 
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before the bulk. For a discussion of the dependence of Tc on the number of layers in this 

case, see H. Li, M. Paczuski, M. Kardar, and K. Huang, Phys. Rev. B 44, 8274 (1991). 

• Proof of the Gibbs inequality: To approximate the partition function Z = tr e−βH 

of a difficult problem, we start we a simpler Hamiltonian H0 whose properties are easier 

to calculate. The Hamiltonian H(λ) = H0 + (H−H0) interpolates between the two as λ 

changes from zero to one. The corresponding partition function 

Z(λ) = tr{exp [−βH0 − λβ (H−H0)]}, 

must satisfy the convexity condition d2 lnZ(λ)/dλ2 = β2 (H−H0)
2 

≥ 0, and hence 
0c 

d lnZ � 
lnZ(λ) ≥ lnZ(0) + λ . 

dλ λ=0 

But it is easy to show that d lnZ/dλ|λ=0 
= β 〈H0 −H〉

0
, where the subscript indicates 

expectation values with respect to H0. Defining free energies via βF = − lnZ, we thus 

arrive at the inequality 

βF ≤ βF0 + 〈βH− βH0〉0 . 

******** 

3. Superfluid He4–He3 mixtures: The superfluid He4 order parameter is a complex 

number ψ(x) . In the presence of a concentration c(x) of He3 impurities, the system has 

the following Landau–Ginzburg energy 

βH[ψ, c] = dd x 
K 

|∇ψ|2 + 
t 
|ψ|2 + u |ψ|4 + v |ψ|6 + 

c(x)2 
− γc(x)|ψ|2 ,

2 2 2σ2 

with positive K, u and v. 

(a) Integrate out the He3 concentrations to find the effective Hamiltonian, βHeff [ψ], for 

the superfluid order parameter, given by 

Z = Dψ exp (−βHeff [ψ]) ≡ DψDc exp (−βH[ψ, c]) . 

(b) Obtain the phase diagram for βHeff [ψ] using a saddle point approximation. Find the 

limiting value of σ∗ above which the phase transition becomes discontinuous. 
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(c) The discontinuous transition is accompanied by a jump in the magnitude of ψ. How 

does this jump vanish as σ → σ∗? 

(d) Show that the discontinuous transition is accompanied by a jump in He3 concentration. 

(e) Sketch the phase boundary in the (t, σ) coordinates, and indicate how its two segments 

join at σ∗ . 

(f) Going back to the original joint probability for the fields c(x) and Ψ(x), show that 

〈c(x) − γσ2|Ψ(x)|2〉 = 0. 

(g) Show that 〈c(x)c(y)〉 = γ2σ4〈|Ψ(x)|2|Ψ(y)|2〉, for x 6= y. 

(h) Qualitatively discuss how 〈c(x)c(0)〉 decays with x = |x| in the disordered phase. 

(i) Qualitatively discuss how 〈c(x)c(0)〉 decays to its asymptotic value in the ordered 

phase. 

******** 

4. Crumpled surfaces: The configurations of a crumpled sheet of paper can be described 

by a vector field ~r(x), denoting the position in three dimensional space, ~r = (r1, r2, r3), of 

the point at location x = (x1, x2) on the flat sheet. The energy of each configuration is 

assumed to be invariant under translations and rotations of the sheet of paper. 

(a) Show that the two lowest order (in derivatives) terms in the quadratic part of a Landau– 

Ginzburg Hamiltonian for this system are: 

� t K 
βH0[~r] = d2 x ∂α~r · ∂α~r + ∂α

2~r · ∂α
2~r . 

2 2 
α=1,2 

(b) Write down the lowest order terms (there are two) that appear at the quartic level. 

(c) Discuss what happens when t changes sign, assuming that quartic terms provide the 

required stability (and K > 0). 

******** 


