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8.334: Statistical Mechanics II Problem Set # 2 Due: 2/29/08


Fluctuations


1. Coupling to a ‘massless’ field: Consider an ~n-component vector field m(x) coupled to 

a scalar field A(x), through the effective Hamiltonian 

dd K 
(∇~

t
m 2 u(~ e m + 

L 
βH = x m)2 + ~ + m 2)2 + 2 ~ 2A2 (∇A)2 ,

2 2 2

with K, L, and u positive.


(a) Show that there is a saddle point solution of the form ~ = eℓ and A(x) = 0, and
m(x) mˆ

find m for t > 0 and t < 0. 

(b) Sketch the heat capacity C = ∂2 lnZ/∂t2, and discuss its singularity as t → 0 in the 

saddle point approximation. 

(c) Include fluctuations by setting 

~ = ˆ et,m(x) m + φℓ(x) eℓ + φt(x)ˆ

A(x) = a(x), 

and expanding βH to quadratic order in φ and a.


(d) Find the correlation lengths ξℓ, and ξt, for the longitudinal and transverse components


of φ, for t > 0 and t < 0.


(e) Find the correlation length ξa for the fluctuations of the scalar field a, for t > 0 and 

t < 0. 

(f) Calculate the correlation function 〈a(x)a(0)〉 for t > 0.


(g) Compute the correction to the saddle point free energy lnZ, from fluctuations. (You


can leave the answer in the form of integrals involving ξℓ, ξt, and ξa.)


(h) Find the fluctuation corrections to the heat capacity in (b), again leaving the answer 

in the form of integrals. 

(i) Discuss the behavior of the integrals appearing above schematically, and state their 

dependence on the correlation length ξ, and cutoff Λ, in different dimensions. 

(j) What is the critical dimension for the validity of saddle point results, and how is it 

modified by the coupling to the scalar field? 
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2. Random magnetic fields: Consider the Hamiltonian


βH = dd x 
K 

(∇m)2 + 
t

m 2 + u m 4 − h(x)m(x) ,
2 2 

where m(x) and h(x) are scalar fields, and u > 0. The random magnetic field h(x) 

results from frozen (quenched) impurities that are independently distributed in space. For 

simplicity h(x) is assumed to be an independent Gaussian variable at each point x, such 

that 

h(x) = 0, and h(x)h(x ′ ) = Δδd(x − x ′ ), (1) 

where the over-line indicates (quench) averaging over all values of the random fields. The 

above equation implies that the Fourier transformed random field h(q) satisfies 

h(q) = 0, and h(q)h(q ′ ) = Δ(2π)dδd(q + q ′ ). (2) 

(a) Calculate the quench averaged free energy, fsp = min{Ψ(m)}m, assuming a saddle 

point solution with uniform magnetization m(x) = m. (Note that with this assumption, 

the random field disappears as a result of averaging and has no effect at this stage.) 

(b) Include fluctuations by setting m(x) = m + φ(x), and expanding βH to second order 

in φ. 

(c) Express the energy cost of the above fluctuations in terms of the Fourier modes φ(q). 

(d) Calculate the mean 〈φ(q)〉, and the variance |φ(q)|2 
c
, where 〈· · ·〉 denotes the usual 

thermal expectation value for a fixed h(q). 

(e) Use the above results, in conjunction with Eq.(2), to calculate the quench averaged 

scattering line shape S(q) = 〈|φ(q)|2〉. 

(f) Perform the Gaussian integrals over φ(q) to calculate the fluctuation corrections, 

δf [h(q)], to the free energy. 
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Reminder : dφdφ∗ exp − 
K 

|φ|2 + h∗φ + hφ∗ =
2π 

exp 
|h|2 

2 K 2K
−∞ 

(g) Use Eq.(2) to calculate the corrections due to the fluctuations in the previous part to 

the quench averaged free energy f . (Leave the corrections in the form of two integrals.) 
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(h) Estimate the singular t dependence of the integrals obtained in the fluctuation correc­

tions to the free energy. 

(i) Find the upper critical dimension, du, for the validity of saddle point critical behavior. 

******** 

3. Long–range interactions: Consider a continuous spin field ~s(x), subject to a long–range 

ferromagnetic interaction 

dd xdd y 
~s(x) · ~s(y) 

,
|x − y|d+σ 

as well as short-range interactions. 

(a) How is the quadratic term in the Landau-Ginzburg expansion modified by the pres­

ence of this long-range interaction? For what values of σ is the long-range interaction 

dominant? 

(b) By estimating the magnitude of thermally excited Goldstone modes (or otherwise), 

obtain the lower critical dimension dℓ below which there is no long–range order. 

(c) Find the upper critical dimension du, above which saddle point results provide a correct 

description of the phase transition. 

******** 


