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8.334: Statistical Mechanics II Problem Set # 4 Due: 4/2/08


Transfer Matrices & Position space renormalization 

This problem set is partly intended to introduce the transfer matrix method, which 

is used to solve a variety of one-dimensional models with near-neighbor interactions. As 

an example, consider a linear chain of N Ising spins (σi = ±1), with a nearest–neighbor 

coupling K, and a magnetic field h. To simplify calculations, we assume that the chain 

is closed upon itself such that the first and last spins are also coupled (periodic boundary 

conditions), resulting in the Hamiltonian 

N 

−βH = K (σ1σ2 + σ2σ3 + · · · + σN−1σN + σNσ1) + h σi . (1) 
i=1 

The corresponding partition function, obtained by summing over all states, can be ex

pressed as the product of matrices, since 

N � � 
� � � � h 

Z = · · · exp Kσiσi+1 + (σi + σi+1)
2 (2) σ1 =±1 σ2 =±1 σN =±1 i=1 

≡ tr [〈σ1|T |σ2〉〈σ2|T |σ3〉 · · · 〈σN |T |σ1〉] = tr 
� 
TN
� 
; 

where we have introduced the 2 × 2 transfer matrix T , with elements 

� � e K+h e−K 
h 

〈σi|T |σj〉 = exp Kσiσj + (σi + σj) , i.e. T = . (3) 
2 e−K K−h e 

The expression for trace of the matrix can be evaluated in the basis that diagonalizes 

T , in which case it can be written in terms of the two eigenvalues λ as ± 

Z = λN + λN = λN 1 + (λ /λ+)
N 

≈ λN (4) + + + .− −

We have assumed that λ+ > λ , and since in the limit of N → ∞ the larger eigenvalue −

dominates the sum, the free energy is 

βf = − lnZ/N = − lnλ+. (5) 

Solving the characteristic equation, we find the eigenvalues 

λ = e K cosh h ± e2K sinh2 h + e−2K . (6) ± 
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We shall leave a discussion of the singularities of the resulting free energy (at zero temper

ature) to the next section, and instead look at the averages and correlations in the limit 

of h = 0. 

To calculate the average of the spin at site i, we need to evaluate 

N
1 

〈σi〉 = · · · σi exp (Kσjσj+1)
Z 

σ1 =±1 σ2 =±1 σN =±1 j=1 

1 (7) 
≡ tr [〈σ1|T |σ2〉 · · · 〈σi−1|T |σi〉σi〈σi|T |σi+1〉 · · · 〈σN |T |σ1〉]

Z


TN−i+1
= 
1 

tr 
� 
T i−1σ̂z

� 
= 

1 
tr 
� 
TN σ̂z 

� 
,

Z Z 

1 0 
where have permuted the matrices inside the trace, and σ̂z = , is the usual 2×2 

0 −1 
Pauli matrix. One way to evaluate the final expression in Eq.(7) is to rotate to a basis 

where the matrix T is diagonal. For h = 0, this is accomplished by the unitary matrix 
1 1 

U = √1
2 1 −1 

, resulting in 

1 
�� 

λN 0 
�� 

0 1 
�� 

1 
� 

0 λN 
� 

〈σi〉 = tr + = + = 0. (8) 
Z 0 λN 1 0 Z λN 0− − 

0 1 
Note that under this transformation the Pauli matrix σ̂z is rotated into σ̂x = . 

1 0 
The vanishing of the magnetization at zero field is of course expected by symmetry. 

A more interesting quantity is the two-spin correlation function 

N
1 

〈σiσi+r〉 = · · · σiσi+r exp (Kσjσj+1)
Z 

σ1 =±1 σ2 =±1 σN =±1 j=1 (9) 

= 
1 

tr 
� 
T i−1σ̂zT

rσ̂zT
N−i−r+1

� 
= 

1 
tr 
� 
σ̂zT

rσ̂zT
N−r 

� 
. 

Z Z 

Once again rotating to the basis where T is diagonal simplifies the trace to 
�� �� �� �� �� 

1 0 1 λr 0 0 1 λN−r 0 
〈σiσi+r〉 = tr + + 

Z 1 0 0 λr 1 0 0 λN−r 

1 
� 

λN−rλr 0 

− 
� 

λN−rλr + λN−rλ

− 
r 

(10) 

= tr + − = + − − + . 
λN−rλr λN + λNZ 0 − + + − 

Note that because of the periodic boundary conditions, the above answer is invariant under 

r → (N − r). We are interested in the limit of N ≫ r, for which 

� �r 

e−r/ξ〈σiσi+r〉 ≈ 
λ− 

≡ , (11) 
λ+ 
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with the correlation length 

λ+ 
−1 

1 
ξ = ln = − . (12) 

λ ln tanhK− 

The above transfer matrix approach can be generalized to any one dimensional chain 

with variables {si} and nearest neighbor interactions. The partition function can be written 

as 
N N 

Z = exp B(si, si+1) = e B(si,si+1), (13) 
{si} i=1 {si} i=1 

where we have defined a transfer matrix T with elements, 

〈si|T |sj〉 = e B(si,sj ). (14) 

In the case of periodic boundary conditions, we then obtain 

Z = tr 
� 
TN
� 
≈ λN . (15) max

Note that for N → ∞, the trace is dominated by the largest eigenvalue λmax. Quite 

generally the largest eigenvalue of the transfer matrix is related to the free energy, while 

the correlation lengths are obtained from ratios of eigenvalues. Frobenius’ theorem states 

that for any finite matrix with finite positive elements, the largest eigenvalue is always 

non-degenerate. This implies that λmax and Z are analytic functions of the parameters 

appearing in B, and that one dimensional models can exhibit singularities (and hence a 

phase transition) only at zero temperature (when some matrix elements become infinite). 

While the above formulation is framed in the language of discrete variables {si}, the 

method can also be applied to continuous variables as illustrated in the following problems. 

As an example of the latter, let us consider three component unit spins �si = (si
x, si

y, si
z), 

with the Heisenberg model Hamiltonian 

N 

−βH = K �si · �si+1. (16) 
i=1 

Summing over all spin configurations, the partition function can be written as 

�

N 

i=1


~si ~si


Z = tr e K ~si·~si+1 = tr e K~s1·~s2 e K~s2·~s3 · · · e K~sN ·~s1 = trTN , (17) 
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where 〈�s1|T |�s2〉 = eK~s1·~s2 is a transfer function. Quite generally we would like to bring T 

into the diagonal form α λα|α〉〈α| (in Dirac notation), such that 

〈�s1|T |�s2〉 = λα 〈�s1|α〉 〈α|�s2〉 = λαfα(�s1)fα
∗(�s2). (18) 

α α 

From studies of plane waves in quantum mechanics you may recall that the exponential of 

a dot product can be decomposed in terms of the spherical harmonics Yℓm. In particular, 

∞ ℓ 

e K~s1·~s2 = 4πiℓjℓ(−ik)Y ∗ s1)Yℓm(�s2), (19) ℓm(�
ℓ=0 m=−ℓ 

is precisely in the form of Eq.(18), from which we can read off the eigenvalues λℓm(k) = 

4πiℓjℓ(−ik), which do not depend on m. The partition function is now given by 

∞ ℓ ∞
Z = tr TN = λN = (2ℓ + 1)λN ≈ λN 

0 , (20) ℓm ℓ 

ℓ=0 m=−ℓ ℓ=0 

with λ0 = 4πj0(−ik) = 4πsinhK/K as the largest eigenvalue. The second largest eigen

value is three fold degenerate, and given by λ1 = 4πj1(−ik) = 4π 
� 
cosh K/K − sinhK/K2

� 
. 

1. The spin–1 model: Consider a linear chain where the spin si at each site takes on 

three values si = −1, 0, +1. The spins interact via a Hamiltonian 

−βH = Ksisi+1. 
i 

(a) Write down the transfer matrix 〈s|T |s ′〉 = eKss ′ 
explicitly. 

(b) Use symmetry properties to find the largest eigenvalue of T and hence obtain the 

expression for the free energy per site (lnZ/N). 

(c) Obtain the expression for the correlation length ξ, and note its behavior as K → ∞. 

(d) If we try to perform a renormalization group by decimation on the above chain we find 

that additional interactions are generated. Write down the simplest generalization of βH 

whose parameter space is closed under such RG. 

******** 

2. Clock model: Each site of the lattice is occupied by a q-valued spin si ≡ 1, 2, · · · , q, 

with an underlying translational symmetry modulus q, i.e. the system is invariant under 
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si → (si + n)modq. The most general Hamiltonian subject to this symmetry with nearest– 

neighbor interactions is 

βHC = − J(|si − sj|modq), 
<i,j> 

where J(n) is any function, e.g. J(n) = J cos(2πn/q). Potts models are a special case of 

Clock models with full permutation symmetry, and Ising model is obtained in the limit of 

q = 2. 

(a) For a closed linear chain of N clock spins subject to the above Hamiltonian show that 

the partition function Z = tr [exp(−βH)] can be written as 

Z = tr [〈s1|T |s2〉〈s2|T |s3〉 · · · 〈sN |T |s1〉] ; 

where T ≡ 〈si|T |sj〉 = exp [J(si − sj)] is a q × q transfer matrix. 

(b) Write down the transfer matrix explicitly and diagonalize it. Note that you do not 

have to solve a qth order secular equation; because of the translational symmetry, the 

eigenvalues are easily obtained by discrete Fourier transformation as 

q � � 
� 2πink 

λ(k) = exp J(n) + . 
q

n=1 

(c) Show that Z = 
�

k
q 
=1 λ(k)N ≈ λ(0)N for N → ∞. Write down the expression for the 

free energy per site βf = − lnZ/N . 

(d) Show that the correlation function can be calculated from 

q 
� � 1 � � � 
δsi,si+ℓ = tr ΠαT ℓΠαTN−ℓ ,

Z 
α=1 

where Πα is a projection matrix. Hence show that δsi,si+ℓ c 
∼ [λ(1)/λ(0)]ℓ . (You do not 

have to explicitly calculate the constant of proportionality.) 

******** 

3. XY model: Consider two component unit spins s�i = (cos θi, sin θi) in one dimension, 
�N

with the nearest neighbor interactions described by −βH = K i=1 s�i · si�+1. 

(a) Write down the transfer matrix 〈θ|T |θ′〉, and show that it can be diagonalized with 

eigenvectors fm(θ) ∝ eimθ for integer m. 



� 

(b) Calulate the free energy per site, and comment on the behavior of the heat capacity 

as T ∝ K−1 → 0. 

(c) Find the correlation length ξ, and note its behavior as K → ∞. 

******** 

4. (Optional) One dimensional gas: The transfer matrix method can also be applied 

to a one dimensional gas of particles with short-range interactions, as described in this 

problem. 

(a) Show that for a potential with a hard core that screens the interactions from further 

neighbors, the Hamiltonian for N particles can be written as 

N N 
� 2 

� 
H = 

pi + V(xi − xi−1). 
2m 

i=1 i=2 

The (indistinguishable) particles are labeled with coordinates {xi} such that 

0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ L, 

where L is the length of the box confining the particles. 

(b) Write the expression for the partition function Z(T, N, L). Change variables to δ1 = 

x1, δ2 = x2 − x1, · · · , δN = xN − xN−1, and carefully indicate the allowed ranges of 

integration and the constraints. 

(c) Consider the Gibbs partition function obtained from the Laplace transformation 

∞ 
Z(T, N, P ) = dL exp(−βPL)Z(T, N, L), 

0 

and by extremizing the integrand find the standard formula for P in the canonical ensem

ble. 
�N

(d) Change variables from L to δN+1 = L− i=1 δi, and find the expression for Z(T, N, P ) 

as a product over one-dimensional integrals over each δi. 

(e) At a fixed pressure P , find expressions for the mean length L(T, N, P ), and the density 

n = N/L(T, N, P ) (involving ratios of integrals which should be easy to interpret). 

Since the expression for n(T, P ) in part (e) is continuous and non-singular for any 

choice of potential, there is in fact no condensation transition for the one-dimensional 
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gas. By contrast, the approximate van der Waals equation (or the mean-field treatment) 

incorrectly predicts such a transition. 

(f) For a hard sphere gas, with minimum separation a between particles, calculate the 

equation of state P (T, n). Compare the excluded volume factor with the approximate 

result obtained in earlier problems, and also obtain the general virial coefficient Bℓ(T ). 

******** 

5. Potts chain (RG): Consider a one-dimensional array of N Potts spins si = 1, 2, · · · , q, 

subject to the Hamiltonian −βH = J i δsi,si+1 . 

(a) Using the transfer matrix method (or otherwise) calculate the partition function Z, 

and the correlation length ξ. 

(b) Is the system critical at zero temperature for antiferromagnetic couplings J < 0? 

(c) Construct a renormalization group (RG) treatment by eliminating every other spin. 

Write down the recursion relations for the coupling J , and the additive constant g. 

(d) Discuss the fixed points, and their stability. 

(e) Write the expression for lnZ in terms of the additive constants of successive rescalings. 

(f) Show that the recursion relations are simplified when written in terms of t(J) ≡ 

e−1/ξ(J). 

(g) Use the result in (f) to express the series in (e) in terms of t. Show that the answer 

can be reduced to that obtained in part (a), upon using the result 

�

∞
1 1 + t2

n 

ln = − ln(1 − t). 
2n+1 1 − t2n 

n=0 

(h) Repeat the RG calculation of part (c), when a small symmetry breaking term h i δsi,1 

is added to −βH. You will find that an additional coupling term K i δsi,1δsi+1,1 is gen

erated under RG. Calculate the recursion relations in the three parameter space (J, K, h). 

(i) Find the magnetic eigenvalues at the zero temperature fixed point where J → ∞, and 

obtain the form of the correlation length close to zero temperature. 

******** 

6. Cluster RG: Consider Ising spins on a hexagonal lattice with nearest neighbor interac

tions J . 



(a) Group the sites into clusters of four in preparation for a position space renormalization 

group with b = 2. 

(b) How can the majority rule be modified to define the renormalized spin of each cluster. 

(c) For a scheme in which the central site is chosen as the tie–breaker, make a table of all 

possible configurations of site–spins for a given value of the cluster–spin. 

(d) Focus on a pair of neighboring clusters. Indicate the contributions of intra–cluster and 

inter–cluster bonds to the total energy. 

(e) Show that in zero magnetic field, the Boltzmann weights of parallel and anti-parallel 

clusters are given by 

R(+, +) = x 8 + 2x 6 + 7x 4 + 14x 2 + 17 + 14x−2 + 7x−4 + 2x−6 , 

and 

R(+,−) = 9x 4 + 16x 2 + 13 + 16x−2 + 9x−4 + x−8 , 

where x = eJ .


(f) Find the expression for the resulting recursion relation J ′(J).


(g) Estimate the critical ferromagnetic coupling Jc, and the exponent ν obtained from this


RG scheme, and compare with the exact values.


(h) What are the values of the magnetic and thermal exponents (yh, yt) at the zero tem


perature ferromagnetic fixed point?


(i) Is the above scheme also applicable for anti-ferromagnetic interactions? What symmetry


of the original problem is not respected by this transformation? 

******** 

7. (Optional) Transition probability matrix: Consider a system of two Ising spins with 

a coupling K, which can thus be in one of four states. 

(a) Explicitly write the 4 × 4 transition matrix corresponding to single spin flips for a 

Metropolis algorithm. Verify that the equilibrium weights are indeed a left eigenvector of 

this matrix. 

(b) Repeat the above exercise if both single spin and double spin flips are allowed. The 

two types of moves are chosen randomly with probabilities p and q = 1 − p. 

******** 


