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8.334: Statistical Mechanics II Spring 2008 Test 2


Review Problems & Solutions


The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The intent of this sheet is as a reminder of important formulas and definitions, and not as 

a compact transcription of the answers provided here. If this privilege is abused, it will be 

revoked for future tests. The test will be composed entirely from a subset of the following 

problems. Thus if you are familiar and comfortable with these problems, there will be no 

surprises! 

******** 

1. Scaling in fluids: Near the liquid–gas critical point, the free energy is assumed to take 

the scaling form F/N = t2−αg(δρ/tβ), where t = |T − Tc|/Tc is the reduced temperature, 

and δρ = ρ − ρc measures deviations from the critical point density. The leading singular 

behavior of any thermodynamic parameter Q(t, δρ) is of the form tx on approaching the 

critical point along the isochore ρ = ρc; or δρy for a path along the isotherm T = Tc. Find 

the exponents x and y for the following quantities: 

• Any homogeneous thermodynamic quantity Q(t, δρ) can be written in the scaling form 

δρ 
Q(t, δρ) = txQgQ . 

tβ 

Thus, the leading singular behavior of Q is of the form txQ if δρ = 0, i.e. along the critical 

isochore. In order for any Q to be independent of t along the critical isotherm as t 0, →
the scaling function for a large enough argument should be of the form 

lim gQ(x) = x xQ/β , 
x→∞ 

so that 

Q(0, δρ) ∝ (δρ)yQ , with yQ = 
xQ 

. 
β 

(a) The internal energy per particle �H�/N , and the entropy per particle s = S/N. 

• Let us assume that the free energy per particle is 

F 2−α δρ 
f = = t g ,

N tβ 

∂ 1 ∂and that T < Tc, so that 
∂T 

= 
Tc ∂t

. The entropy is then given by −

∂f ∣ 1 ∂f ∣ t1−α δρ 
s = = = gS ,

∂T ∂t tβ
− 

V T c ρ Tc 
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so that xS = 1 − α, and yS = (1 − α)/β. For the internal energy, we have 

1−αf = 
�H� − Ts, or 

�H� ∼ Tc s(1 + t) ∼ t gH 
δρ 

,
N N tβ 

therefore, xH = 1 − α and yH = (1 − α)/β. 

(b) The heat capacities CV = T∂s/∂T V , and CP = T∂s/∂T P .| |
• The heat capacity at constant volume 

∂S 
∣

∣ ∂s 
∣

∣ t−α 
( 
δρ 
) 

CV = T 
∂T V 

= −
∂t ρ 

= 
Tc 

gCV tβ 
, 

so that xCV 
= −α and yCV 

= −α/β. 

To calculate the heat capacity at constant pressure, we need to determine first the 

relation δρ(t) at constant P . For that purpose we will use the thermodynamic identity 

∣ ∂P 
∂δρ ∣ ∂t ρ 

∂t 
= −

∂P ∣
∣ . 

P 
∣∂δρ 
t 

The pressure P is determined as 

−
∂V ∂δρ 

∼ ρ2 2−α−βP = 
∂F 

= ρ2 ∂f 
t gP 

δρ 
,c tβ 

which for δρ ≪ tβ goes like 
 ∣ 

∂P ∣ 
 1−α−β 
 ∣ 

( )  t
 ∂t 

∝
2−α−β δρ ρ

P ∝ t 1 + A
tβ 

, and consequently 
 ∂P ∣

∣ . 
 2−α−2β 
 ∣ 
 t
∂δρ t 

∝

In the other extreme of δρ ≫ tβ , 
 ∣ 
 ∂P 

∣

∣ 
∝ δρ(1−α−β)/β  

( )  
 ∣ 

P ∝ δρ(2−α−β)/β t ∂t ρ
1 +B , and ∣ ,

δρ1/β 
 ∂P ∣ 
 
 ∣ ∝ δρ(2−α−2β)/β 
 
∂δρ t 

where we have again required that P does not depend on δρ when δρ 0, and on t if → 
t 0. →

From the previous results, we can now determine 

∂δρ 
∣

∣ tβ−1 = δρ ∝ tβ 

∣ 
δρ(β−1)/β ∂t 

∣ 
P 

∝ 
= 

⇒
t ∝ δρ1/β 

. 
⇒
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From any of these relationships follows that δρ ∝ tβ , and consequently the entropy is 

s ∝ t1−α . The heat capacity at constant pressure is then given by 

CP ∝ t−α , with xCP 
= −α and yCP 

= − α
β 
. 

(c) The isothermal compressibility κT = ∂ρ/∂P T /ρ, and the thermal expansion coeffi­|
cient α = ∂V/∂T P /V .|

Check that your results for parts (b) and (c) are consistent with the thermodynamic 

identity CP − CV = TV α2/κT . 

• The isothermal compressibility and the thermal expansion coefficient can be computed 

using some of the relations obtained previously 

∣ ∣ −1 ( ) 

κT =
1 ∂ρ ∣

∣ =
1 ∂P ∣ 

=
1 
tα+2β−2 δρ 

,
ρ ∂P ∣ T ρ c ∂ρ ∣ T ρ3 

c 

gκ 
tβ 

with xκ = α + 2β − 2, and yκ = (α + 2β − 2)/β. And 

1 ∂V ∣ 1 ∂ρ ∣ β−1α = 
V ∂T P 

= 
ρTc ∂t P 

∝ t , 

with xα = β − 1, and yα = (β − 1)/β. So clearly, these results are consistent with the 

thermodynamic identity, 

(CP − CV )(t, 0) ∝ t−α , or (CP − CV )(0, δρ) ∝ δρ−α/β, 

and 
α2 α2 

(t, 0) ∝ t−α , or (0, δρ) ∝ δρ−α/β. 
κT κT 

(d) Sketch the behavior of the latent heat per particle L, on the coexistence curve for 

T < Tc, and find its singularity as a function of t. 

The latent heat • 
L = T (s+ − s−) 

is defined at the coexistence line, and as we have seen before 

Ts± = t1−α gs 
δρ± 

. 
tβ 

The density difference between the two coexisting phases is the order parameter, and 

vanishes as tβ , as do each of the two deviations δρ+ = ρc − 1/v+ and δρ− = ρc − 1/v− 
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L 

t 
t=0 

of the gas and liquid densities from the critical critical value. (More precisely, as seen in 

(b), δρ| ∝ tβ.) The argument of g in the above expression is thus evaluated at P=constant 

a finite value, and since the latent heat goes to zero on approaching the critical point, we 

get 

L ∝ t1−α , with xL = 1 − α. 

******** 

2. The Ising model: The differential recursion relations for temperature T , and magnetic 

field h, of the Ising model in d = 1 + ǫ dimensions are 

 
dT T 2 

 
 

dℓ 
= − ǫ T + 

2 
, 

 dh 
 =dh . 

dℓ 

(a) Sketch the renormalization group flows in the (T, h) plane (for ǫ > 0), marking the 

fixed points along the h = 0 axis. 

• The fixed points of the flow occur along the h = 0 axis, which is mapped to itself under 

RG. On this axis, there are three fixed points: (i) T ∗ = 0, is the stable sink for the low 

temperature phase. (ii) T ∗ → ∞, is the stable sink for the high temperature phase. (iii) 

There is a critical fixed point at (T ∗ = 2ǫ, h∗ = 0), which is unstable. All fixed points are 

unstable in the field direction. 

(b) Calculate the eigenvalues yt and yh, at the critical fixed point, to order of ǫ. 

Linearizing T = T ∗ + δT , around the critical fixed point yields • 
 
 
 
dδT 

= − ǫ δT + T ∗ δT = ǫδT 
{ 
yt = + ǫdℓ 

 dh 
, = ⇒ 

yh =1 + ǫ
. 

 =(1 + ǫ)h 
dℓ 
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(c) Starting from the relation governing the change of the correlation length ξ under 

renormalization, show that ξ(t, h) = t−νgξ h/|t|Δ (where t = T/Tc − 1), and find the 

exponents ν and Δ. 

• Under rescaling by a factor of b, the correlation length is reduced by b, resulting in the 

homogeneity relation 

ξ(t, h) = bξ(bytt, byhh). 

Upon selecting a rescaling factor such that bytt ∼ 1, we obtain 

ξ(t, h) = t−ν gξ 

( 
h/|t| Δ

) 
, 

with 
1 1 yh 1 

ν = = , and Δ = = + 1. 
yt ǫ yt ǫ 

(d) Use a hyperscaling relation to find the singular part of the free energy fsing.(t, h), and 

hence the heat capacity exponent α. 

• According to hyperscaling 

fsing.(t, h) ∝ ξ(t, h)−d = td/yt gf 

( 
h/|t| Δ

) 
. 

Taking two derivatives with respect to t leads to the heat capacity, whose singularity for 

h = 0 is described by the exponent 

1 + ǫ 1 
α = 2 − dν = 2 − 

ǫ 
= −

ǫ 
+ 1. 
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(e) Find the exponents β and γ for the singular behaviors of the magnetization and sus­

ceptibility, respectively. 

• The magnetization is obtained from the free energy by 

m = 
∂f ∣ 

t β , with β = 
d − yh 

= 0.−
∂h h=0 

∼ | | 
yt 

(There will be corrections to β at higher orders in ǫ.) The susceptibility is obtained from 

a derivative of the magnetization, or 

χ = − ∂
∂h

2f 
2 

∣

∣

∣ 
h=0 

∼ |t| −γ , with γ =
2yh 

yt 

− d 
=

1 +

ǫ

ǫ 
=

1 

ǫ 
+ 1. 

(f) Starting the relation between susceptibility and correlations of local magnetizations, 

calculate the exponent η for the critical correlations (�m(0)m(x)� ∼ |x|−(d−2+η)). 

• The magnetic susceptibility is related to the connected correlation function via 

χ = dd x �m(0)m(x)�c . 

Close to criticality, the correlations decay as a power law �m(0)m(x)� ∼ |x|−(d−2+η), which 

is cut off at the correlation length ξ, resulting in 

χ ∼ ξ(2−η) −(2−η)ν ∼ |t| . 

From the corresponding exponent identity, we find 

γ = (2 − η)ν, = ⇒ η = 2 − ytγ = 2 − 2yh + d = 2 − d = 1 − ǫ. 

(g) How does the correlation length diverge as T 0 (along h = 0) for d = 1? →
• For d = 1, the recursion relation for temperature can be rearranged and integrated, i.e. 

1 dT 1 2 

T 2 dℓ 
=

2
, = ⇒ d −

T 
= dℓ. 

We can integrate the above expression from a low temperature with correlation length 

ξ(T ) to a high temperature where 1/T ≈ 0, and at which the correlation length is of the 

order of the lattice spacing, to get 

2 ξ 2 −
T 

= ln 
a 

= ⇒ ξ(T ) = a exp 
T

. 
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3. Longitudinal susceptibility: While there is no reason for the longitudinal susceptibility 

to diverge at the mean-field level, it in fact does so due to fluctuations in dimensions d < 4. 

This problem is intended to show you the origin of this divergence in perturbation theory. 

There are actually a number of subtleties in this calculation which you are instructed to 

ignore at various steps. You may want to think about why they are justified. 

Consider the Landau–Ginzburg Hamiltonian: 

dd K
m)2 

t
m 2 u(~ 2)2βH = x 

2
(∇~ +

2 
~ + m , 

describing an n–component magnetization vector m(x), in the ordered phase for~ t < 0. 

(a) Let ~ = ˆ φt(x)ˆm(x)
( 
m+φℓ(x) 

) 
eℓ+~ et, and expand βH keeping all terms in the expansion. 

With m~ (x) = (m̄+ φℓ (x)) êℓ + φ~t (x) êt, and m̄ the minimum of βH,• 
( ) [ ] ( ) 

βH =V 
2 

t
m̄2 + um̄4 + dd x

K 
2

(∇φℓ)
2 

+ 
( 
∇φ~t 

)2 

+
2 

t 
+ 6um̄2 φℓ 

2 

+ 
t 

+ 2um̄2 φ~t 
2 + 4um̄ φ3 

ℓ + φℓφ~t 
2 + u φℓ 

4 + 2φ2 
ℓφ
~

t 
2 + φ~t 

2 
)2 

. 
2 

Since m̄2 = −t/4u in the ordered phase (t < 0), this expression can be simplified, upon 

dropping the constant term, as 

βH = dd x
K 
2

(∇φℓ)
2 

+ 
( 
∇φ~t 

)2 

− tφ2 
ℓ + 4um̄

( 
φℓ 

3 + φℓφ~t 
2 
) 

( )2 

+u φℓ 
4 + 2φℓ 

2φ~t 
2 + φ~t 

2 . 

(b) Regard the quadratic terms in φℓ and φ~t as an unperturbed Hamiltonian βH0, and the 

lowest order term coupling φℓ and φ~t as a perturbation U ; i.e. 

U = 4um dd xφℓ(x)φ~t(x)2 . 

Write U in Fourier space in terms of φℓ(q) and φ~t(q). 

• We shall focus on the cubic term as a perturbation 

U = 4um̄ ddxφℓ (x)φ~t (x)
2 
, 
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{ 
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which can be written in Fourier space as 

U = 4um̄
ddq 

d 

ddq ′ 
φℓ (−q − q ′ )φ~t (q) φ~t (q ′ ) .

d
(2π) (2π)

· 

(c) Calculate the Gaussian (bare) expectation values �φℓ(q)φℓ(q ′ )�0 and �φt,α(q)φt,β(q ′ )�0, 
and the corresponding momentum dependent susceptibilities χℓ(q)0 and χt(q)0. 

• From the quadratic part of the Hamiltonian, 

βH0 = dd x 
1 

K (∇φℓ)
2 

+ 
( 
∇φ~t 

)2 

− 2tφ2 
ℓ ,

2 

we read off the expectation values 

 
 (2π)

d 
δd (q + q ′ ) 

 
 �φℓ (q)φℓ (q = 

Kq2 − 2t
, 

 
′ )�0 

 (2π)
d 
δd (q + q ′ ) δαβ 

 
 �φt,α (q)φt,β (q ′ )�0 = 

Kq2 

and the corresponding susceptibilities 

 
1 

 
 χℓ (q)0 = 
 

Kq2 − 2t 
. 

 1 
 
 χt (q)0 = 

Kq2 

(d) Calculate �φ~t(q1) φ~t(q2) φ~t(q ′ 1) φ~t(q ′ 2)�0 using Wick’s theorem. (Don’t forget that · · 
φ~t is an (n − 1) component vector.) 

• Using Wick’s theorem, 

φ~t (q1) φ~t (q2)φ~t (q1
′ ) φ~t (q2

′ ) 
0 
≡ �φt,α (q1)φt,α (q2)φt,β (q1

′ )φt,β (q ′ 2)�0· · 
′ ′ ′ ′ = �φt,α (q1)φt,α (q2)�0 �φt,β (q1)φt,β (q2)�0 + �φt,α (q1)φt,β (q1)�0 �φt,α (q2)φt,β (q2)�0 

′ ′ + �φt,α (q1)φt,β (q2)�0 �φt,α (q2)φt,β (q1)�0 . 

Then, from part (c), 

〈 
′ ′ 

〉 (2π)
2d 

2 δ
d (q1 + q2) δ

d (q ′ 1 + q ′ 2)φ~t (q1) · φ~t (q2)φ~t (q1) · φ~t (q2) 
0 

= 
K2 

(n − 1)
q1
2q1 

′2 

δd (q1 + q1
′ ) δd (q2 + q ′ 2) δd (q1 + q2

′ ) δd (q ′ 1 + q2)
+ (n − 1) + (n − 1) ,2 2 2 2q1q2 q1q2 
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∫ 

〉 

∫ 

〈 〉 

2
since δααδββ = (n − 1) , and δαβδαβ = (n − 1). 

(e) Write down the expression for �φℓ(q)φℓ(q ′ )� to second-order in the perturbation U . 

Note that since U is odd in φℓ, only two terms at the second order are non–zero. 

• Including the perturbation U in the calculation of the correlation function, we have 

〈 〉 〈 ( )〉 
φℓ (q)φℓ (q ′ ) e−U φℓ (q)φℓ (q ′ ) 1 − U + U2/2 +

�φℓ (q)φℓ (q ′ )� = �e �0
0 = �(1 − U + U2/2 + )�0 

· · · 
0 .

−U · · ·

Since U is odd in φℓ, �U�0 = �φℓ (q)φℓ (q ′ )U�0 = 0. Thus, after expanding the denomina­

tor to second order, 

1 
〈 
U2
〉

( 

1 + �U2/2�0 +
= 1 − 

2
+ O U3

) 
, · · · 0 

we obtain 

�φℓ (q)φℓ (q ′ )� = �φℓ (q)φℓ (q ′ )�0 +
1

2 

(〈 
φℓ (q)φℓ (q ′ )U2

〉 
0 
− �φℓ (q)φℓ (q ′ )�0 

〈 
U2
〉 ) 

.
0 

(f) Using the form of U in Fourier space, write the correction term as a product of two 

4–point expectation values similar to those of part (d). Note that only connected terms 

for the longitudinal 4–point function should be included. 

• Substituting for U its expression in terms of Fourier transforms from part (b), the 

fluctuation correction to the correlation function reads 

GF (q, q ′ ) ≡ �φℓ (q)φℓ (q ′ )� − �φℓ (q)φℓ (q ′ )�0 

=
1

2
(4um̄)

2 

(2

dd

π

q

)

1 

d 
(2

dd

π

q

)

2 

d 
(2

dd

π

q 

)

1 
′ 

d 
(2

dd

π

q 

)

2 
′ 

d 

〈 
φℓ (q)φℓ (q ′ )φℓ (−q1 − q2)φ~t (q1) · φ~t (q2) 

′ ′ ′ ′ 1 × φℓ (−q1 − q2)φ
~

t (q1) · φ~t (q2) 
0 
−

2 
�φℓ (q)φℓ (q ′ )�0 

〈 
U2
〉 
0 
, 

i.e. GF (q, q ′ ) is calculated as the connected part of 

q1 q1
(4um̄)

2 dd

d 

ddq2 
d 

dd
1 
′ 

d 

ddq2 
′ 

d 
�φℓ (q)φℓ (q ′ )φℓ (−q1 − q2)φℓ (−q1 

′ − q2
′ )�02 (2π) (2π) (2π) (2π)

× φ~t (q1) · φ~t (q2)φ~t (q1
′ ) · φ~t (q2

′ ) , 
0 

where we have used the fact that the unperturbed averages of products of longitudinal and 
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{ 

} 

∫ 
〈 〉 

{ 

} 

{ 

∫ } 

transverse fields factorize. Hence 

GF (q, q ′ ) =
1

(4um̄)
2 
∫ 

ddq1 
d 

ddq2 
d 

ddq1 
′ 

d 

ddq2 
′ 

d 

〈 
φ~t (q1) φ~t (q2)φ~t (q1

′ ) φ~t (q2
′ ) 
〉 

2 (2π) (2π) (2π) (2π)
· · 

0 

× �φℓ (q)φℓ (−q1 − q2)�0 �φℓ (q ′ )φℓ (−q1 
′ − q2

′ )�0 

+ �φℓ (q)φℓ (−q1 
′ − q2

′ )�0 �φℓ (q ′ )φℓ (−q1 − q2)�0 
′ = 2

1
(4um̄)

2 ddq1 
d 

ddq2 
d 

ddq1 
′ 

d 

ddq2 
′ 

d 
φ~t (q1) φ~t (q2)φ~t (q1) φ~t (q2

′ )×
2 (2π) (2π) (2π) (2π)

· · 
0 

× �φℓ (q)φℓ (−q1 − q2)�0 �φℓ (q ′ )φℓ (−q1 
′ − q2

′ )�0 . 

Using the results of parts (c) and (d) for the two and four points correlation functions, 

and since u2m̄2 = −ut/4, we obtain 

∫ 2d 

GF (q, q ′ ) = 4u (−t) 
(2

dd

π

q

)

1 

d 
(2

dd

π

q

)

2 

d 
(2

dd

π

q 

)

1 
′ 

d 
(2

dd

π

q 

)

2 
′ 

d 

(2

K

π)
2 

(n − 1)
2 δ

d (q1 + q

q
2

1
2 

)

q

δ

1 
′

d 

2 

(q1 
′ + q2

′ ) 

δd (q1 + q ′ 1) δ
d (q2 + q ′ 2) + δd (q1 + q ′ 2) δ

d (q ′ 1 + q2)
+ (n − 1) 2 2q1q2 

′ ′ ′ (2π)
d 
δd (q − q1 − q2) (2π)

d 
δd (q − q1 − q2) ,× 

Kq2 − 2t Kq2 − 2t 

which, after doing some of the integrals, reduces to 

GF (q, q ′ ) =
4u

K

(−
2 

t)
(n − 1)

2 δ
d (q) δd (q ′ ) 

(
∫ 
dd

2 

q1 
)2 

4t2 q1 

δd (q + q ′ ) ddq1
+ 2 (n − 1) 

(Kq2 − 2t)
2 

q1
2 (q + q1)

2 . 

(g) Ignore the disconnected term obtained in (d) (i.e. the part proportional to (n − 1)2), 

and write down the expression for χℓ(q) in second order perturbation theory. 

From the dependence of the first term (proportional to δd (q) δd (q ′ )), we deduce that • 
this term is actually a correction to the unperturbed value of the magnetization, i.e. 

[ (∫ )] 
2(n − 1)u ddq1 

m m ,→ 1 − 
Kt q1

2 

and does not contribute to the correlation function at non-zero separation. The spatially 

varying part of the connected correlation function is thus 

�φℓ (q)φℓ (q ′ )� =
(2π)

d 
δd (q + q ′ )

+
8u (−t)

(n − 1) 
δd (q + q ′ ) 

∫ 
ddq1 

Kq2 − 2t K2 (Kq2 − 2t)
2 

q1
2 (q + q1)

2 , 

10 



∫ 

∫ 

∫ 

∫ 

∫ ∫ 

∫ 

∫ 

leading to 

χℓ (q) =
1 

+
8u (−t) (n − 1) ddq1 1 

. 
Kq2 − 2t K2 (Kq2 − 2t)

2 
(2π)

d q1
2 (q + q1)

2

(h) Show that for d < 4, the correction term diverges as qd−4 for q 0, implying an → 
infinite longitudinal susceptibility. 

• In d > 4, the above integral converges and is dominated by the large q cutoff Λ. In 

d < 4, on the other hand, the integral clearly diverges as q 0, and is thus dominated →
′ by small q1 values. Changing the variable of integration to q1 = q1/q, the fluctuation 

correction to the susceptibility reads 

∫ Λ/q ddq ′ 1 ∞ ddq ′ 1 ( ) 
χℓ (q)F ∼ q d−4 1 

2 = q d−4 1 
2 + O q 0 ,

d d 
0 (2π) q1 

′2 (q̂ + q1
′ ) 0 (2π) q1 

′2 (q̂ + q1
′ )

which diverges as qd−4 for q 0. →
NOTE: For a translationally invariant system, 

�φ (x)φ (x ′ )� = ϕ (x − x ′ ) , 

which implies 

′ ′ �φ (q)φ (q ′ )� = ddxdd x ′ e iq·x+iq ·x �φ (x)φ (x ′ )� 

= dd (x − x ′ ) dd x ′ e iq·(x−x ′ )+i(q+q ′ )·x ′ ϕ (x − x ′ ) 

= (2π)
d 
δd (q + q ′ )ψ (q) . 

Consider the Hamiltonian 

−βH ′ = −βH + ddxh (x)φ (x) = −βH + 
(2

d

π

dq 

)
d
h (q)φ (−q) , 

where −βH is a translationally invariant functional of φ (a one-component field for sim­

plicity), independent of h (x). We have 

ddq 
m (x = 0) = =�φ (0)�

(2π)
d 
�φ (q)� , 

and, taking a derivative, 

∂m 
= 

ddq ′ 

d 
�φ (q ′ )φ (q)� . 

∂h (q) (2π)
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∣ 

∫ 

∫ 

∫ 

[ ] 

{ 
√ 

At h = 0, the system is translationally invariant, and 

∂m ∣ 
∣ = ψ (q) . 

∂h (q) h=0 

Also, for a uniform external magnetic field, the system is translationally invariant, and 

′ −βH = −βH + h ddxφ (x) = −βH + hφ (q = 0) , 

yielding 

χ = 
∂m 

= 
ddq ′ 

d 
�φ (q ′ )φ (q = 0)� = ψ (0) . 

∂h (2π)

******** 

4. Crystal anisotropy: Consider a ferromagnet with a tetragonal crystal structure. Cou­

pling of the spins to the underlying lattice may destroy their full rotational symmetry. The 

resulting anisotropies can be described by modifying the Landau–Ginzburg Hamiltonian 

to 
[ ] 

( )2 r 
= dd x 

K
m)2 + 

t
~ 2 + u ~ 2 + m1

2 + v m 1
2 ~ 2 ,m m mβH

2
(∇~

2 2 

where ~ ,mn ~ 2 = 
∑n

i 
2 (d = 3 for magnets in three dimensions). m ≡ (m1, ), and m i=1 m n = · · · 

Here u > 0, and to simplify calculations we shall set v = 0 throughout. 

(a) For a fixed magnitude ~ ; what directions in the n component magnetization space |m|
are selected for r > 0, and for r < 0? 

• r > 0 discourages ordering along direction 1, and leads to order along the remaining 

(n − 1) directions. 

r < 0 encourages ordering along direction 1. 

(b) Using the saddle point approximation, calculate the free energies (lnZ) for phases 

uniformly magnetized parallel and perpendicular to direction 1. 

• In the saddle point approximation for ~ = e1, we have m(x) mˆ

lnZsp = −V min 
t + r

m 2 + um 4 ,
2 m 

where V = 
∫ 
ddx, is the system volume. The minimum is obtained for 

0 for t + r > 0 
(t + r)m + 4um 3 = 0, = m = .⇒ −(t + r)/4u for t + r < 0 

For t + r < 0, the free energy is given by 

lnZsp (t + r)2 
= .fsp = − 

V 
− 

16u 

12 
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[ ] { 
√ 

[ ] 

~ + . 

When the magnetization is perpendicular to direction 1, i.e. for ~ = ei for i = 1, the m(x) mˆ

corresponding expressions are 

t 2 4 3 0 for t > 0 
lnZsp = −V min m + um , tm + 4um = 0, m = −t/4u for t < 0 

,
2 m 

and the free energy for t < 0 is 
t2 

fsp = .−
16u 

(c) Sketch the phase diagram in the (t, r) plane, and indicate the phases (type of order), 

and the nature of the phase transitions (continuous or discontinuous). 

• The saddle point phase diagram is sketched in the figure. 

continuous 
phase transitions 

disordered 
phase 

r 

t 

discontinuous 
phase transition 

1 

1 

(d) Are there Goldstone modes in the ordered phases? 

• There are no Goldstone modes in the phase with magnetization aligned along direction 

1, as the broken symmetry in this case is discrete. However, there are (n − 2) Goldstone 

modes in the phase where magnetization is perpendicular to direction 1. 

(e) For u = 0, and positive t and r, calculate the unperturbed averages �m1(q)m1(q ′ )�0 
and �m2(q)m2(q ′ )�0, where mi(q) indicates the Fourier transform of mi(x). 

• The Gaussian part of the Hamiltonian can be decomposed into Fourier modes as 

∫ n
ddq K 2 2 t + r 2 

∑ t 2βH0 = 
(2π)d 2 

q |m(q)| 
2 

|m1(q)| +
2
|mi(q)|

i=2 

13




∫ 

(	 ) 

∫ 

(	 ) 

∫ 

∫ 

From this form we can easily read off the covariances 

 
 �m1(q)m1(q ′ )�0 =

(2π)dδd(q + q ′ )
 
	

t + r +Kq2 
. 

	 (2π)dδd(q + q ′ )
 
 =�m2(q)m2(q ′ )�0 t +Kq2 

(f) Write the fourth order term U ≡ u 
∫ 

x(~ 2)2, in terms of the Fourier modes mi(q). dd m

Substituting mi(x) = dd 
q exp(iq x)mi(q) in the quartic term, and integrating over •	

(2π)d · 
x yields 

∫ ∫	 n 

U = u dd x 
( 
~ 2
)2 

= u
ddq1

(2

d

π

dq

)
2

3d 

ddq3 ∑ 
mi(q1)mi(q2)mj(q3)mj(−q1 − q2 − q3).m 

i,j=1 

(g) Treating U as a perturbation, calculate the first order correction to �m1(q)m1(q ′ )�. 
(You can leave your answers in the form of some integrals.) 

• In first order perturbation theory �O� = �O�0 − (�OU�0 − �O�0 �U�0), and hence 

∫	 n 

�m1(q)m1(q ′ )� = �m1(q)m1(q ′ )�0 − u
ddq1

(2

d

π

dq

)
2

3d 

ddq3 ∑


i,j=1


�m1(q)m1(q ′ )mi(q1)mi(q2)mj(q3)mj(−q1 − q2 − q3)�	c 

0 

(2π)dδd(q + q ′ ) 
{ 

u 
∫ 

ddk 
[ 
4(n − 1) 4 8 

]} 

= 
t + r + Kq2 

1 −
t + r + Kq2 (2π)d t + Kk2 

+ 
t + r + Kk2 

+ 
t + r +Kk2 

The last result is obtained by listing all possible contractions, and keeping track of how 

many involve m1 versus mi6=1 . The final result can be simplified to 

(2π)dδd(q + q ′ ) 
{ 

u ddk 
[ 
n − 1 3 

]} 

�m1(q)m1(q ′ )� = 
t + r +Kq2 

1 −
t + r +Kq2 (2π)d t +Kk2 

+ 
t + r + Kk2 

(h) Treating U as a perturbation, calculate the first order correction to �m2(q)m2(q ′ )�. 
• Similar analysis yields 

∫	 n 

�m2(q)m2(q ′ )� = �m2(q)m2(q ′ )�0 − u
ddq1d

dq2d
dq3 ∑


(2π)3d 
i,j=1


�m2(q)m2(q ′ )mi(q1)mi(q2)mj(q3)mj(−q1 − q2 − q3)�	c 

0 

=
(2π)dδd(q + q ′ ) 

{ 

1 − u ddk 
[ 
4(n − 1) 

+
4 

+
8 

]} 

t +Kq2 t + Kq2 (2π)d t + Kk2 t + r + Kk2 t +Kk2 

(2π)dδd(q + q ′ ) 
{ 

u ddk 
[ 
n + 1 1 

]}


= 
t +Kq2 

1 −
t + Kq2 (2π)d t + Kk2 

+ 
t + r + Kk2 

.
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∫ ∫ 

∫ 

∫ 

∫ 

[ ] 
∑ 

(i) Using the above answer, identify the inverse susceptibility χ−1 
22 , and then find the 

transition point, tc, from its vanishing to first order in u. 

• Using the fluctuation–response relation, the susceptibility is given by 

χ22 = dd x �m2(x)m2(0)� = 
(2

d

π

dq 
)d 

�m2(q)m2(q = 0)� 

1 
{ 

u ddk 
[ 
n + 1 1 

]}


= 
t 

1 −
t (2π)d t + Kk2 

+ 
t + r +Kk2 

.


Inverting the correction term gives 

ddk 
[ 
n + 1 1 

] 

χ−1 = t + 4u + +O(u 2).22 (2π)d t +Kk2 t + r + Kk2 

The susceptibility diverges at 

ddk 
[ 
n + 1 1 

] 

tc = −4u 
(2π)d Kk2 

+ 
r +Kk2 

+O(u 2). 

(j) Is the critical behavior different from the isotropic O(n) model in d < 4? In RG 

language, is the parameter r relevant at the O(n) fixed point? In either case indicate the 

universality classes expected for the transitions. 

• The parameter r changes the symmetry of the ordered state, and hence the universality 

class of the disordering transition. As indicated in the figure, the transition belongs to 

the O(n − 1) universality class for r > 0, and to the Ising class for r < 0. Any RG 

transformation must thus find r to be a relevant perturbation to the O(n) fixed point. 

******** 

5. Cubic anisotropy– Mean-field treatment: Consider the modified Landau–Ginzburg 

Hamiltonian 

∫ n 

βH = dd x 
K 
2 

m)2 +
2 

t
~ 2 + m 2)2 + v mi 

4 ,(∇~ m u(~
i=1 

for an n–component vector ~ = (m1, m2, , mn). The “cubic anisotropy” m(x) term 
∑

· · · 
n 4 
i=1 mi , breaks the full rotational symmetry and selects specific directions. 

(a) For a fixed magnitude ~ ; what directions in the n component magnetization space |m|
are selected for v > 0 and for v < 0? What is the degeneracy of easy magnetization axes 

in each case? 

15 



v > 0 diagonal order v < 0 cubic axis order 

In the figures below, we indicate the possible directions of the magnetization which are 

selected depending upon the sign of the coefficient v, for the simple case of n = 2: 

This qualitative behavior can be generalized for an n-component vector: For v > 0, 
-m lies along the diagonals of a n-dimensional hypercube, which can be labelled as 

and are consequently 2"-fold degenerate. Conversely, for v < 0, m can point along any of 

the cubic axes ti,yielding 
-
m = *7iiti, 

which is 2n-fold degenerate. 

(b) What are the restrictions on u and v for P'H to have finite minima? Sketch these 

regions of stability in the (u,v) plane. 

The Landau-Ginzburg Hamiltonian for each of these cases evaluates to 

implying that there are finite minima provided that 

Above, we represent schematically the distinct regions in the (u,v) plane. 

(c) In general, higher order terms (e.g. ~ ~ ( f i ~ ) ~with ug > 0) are present and ensure 

stability in the regions not allowed in part (b); (as in case of the tricritical point discussed 

in earlier problems). With such terms in mind, sketch the saddle point phase diagram in 

the (t ,  v) plane for u > 0; clearly identifying the phases, and order of the transition lines. 



u + u = o  

allowed 

v 

uilphysical 
u f - = O  

We need to take into account higher order terms to ensure stability in the regions not 

allowed in part b). There is a tricritical point which can be obtained after simultaneously 
solving the equations 

The saddle point phase diagram in the (t,v) plane is then as follows: 

v 

second order bourld .ry 

diagonal order disordered phase 

,t 
first order bound;.ry 

;-u 
tricritical point

cubic axis order ..- - * - ( u + v ) =
7 = 

2u6 

(d) Are there any Goldstone modes in the ordered phases? 

There are no Goldstone modes in the ordered phases because the broken symmetry 
is discrete rather than continuous. We can easily calculate the estimated value of the 



transverse fluctuations in Fourier space as 

from which we can see that indeed these modes become massless only when v = 0,i.e., 
when we retrieve the O ( n )symmetry. 

******** 
6. Cubic anisotropy E-ezpunsion: 

(a) By looking at diagrams in a second order perturbation expansion in both u and v show 

that the recursion relations for these couplings are 

where C = K d h d / ( t+ KA2)' zz K ~ / K ' ,is approximately a constant 

Let us write the Hamiltonian in terms of Fourier modes 

where, as usual, we assume summation over repeated indices. In analogy to problem set 

6, after the three steps of the RG transformation, we obtain the renormalized parameters: 

t ' = b  d z 2 -t 
K/  =b-d-2 z K  2

3 d 4 - ' u' = b  z u 

v' = b  3d z 4 -v 

with f,K,C,and C,are the parameters in the coarse grained Hamiltonian. The depen-
dence of ii and 6,on the original parameters can be obtained by looking at diagrams in 

a second order perturbation expansion in both u and v .  Let us introduce diagrammatic 
representations of u and v ,  as 



Contributions to u Contributions to v 

where, again we have set b = eJe. The new coarse grained parameters are 

which after introducing the parameter t = 4 - d ,  resealing, and renormalizing, yield the 
recursion relations 

(b) Find all fixed points in the (u ,v)  plane, and draw the flow patterns for n < 4 and 

n > 4. Discuss the relevance of the cubic anisotropy term near the stable fixed point in 
each case. 

From the recursion relations, we can obtain the fixed points (u*,v*).  For the sake of 
simplicity, from now on, we will refer to the resealed quantities u = 4Cu, and v = 4Cv, in 

terms of which there are four fixed points located at  

I u* = v* = 0 Gaussian fixed point 

u = 0 v * = -t Ising fixed point
* 9 

t 
v* = 0 O(n) fixed point 

(n + 8) 



( ) ( ) ( ) 

( ) 

Linearizing the recursion relations in the vicinity of the fixed point gives


∗ ∗ ∗ 
d δu ǫ − 2(n + 8)u − 6v − 6u δu 

A = = . 
dℓ ∗ ∗ ∗ δv −12v ǫ − 12u − 18v δv 

u ∗ ,v ∗ 

As usual, a positive eigenvalue corresponds to an unstable direction, whereas negative ones 

correspond to stable directions. For each of the four fixed points, we obtain: 

1. Gaussian fixed point: λ1 = λ2 = ǫ, i.e., this fixed point is doubly unstable for ǫ > 0, as 

ǫ 0 
A = . 

0 ǫ 

2. Ising fixed point: This fixed point has one stable and one unstable direction, as 

 ǫ  
0 

3A =  
ǫ 

 , 
−4

3 
− ǫ 

corresponding to λ1 = ǫ/3 and λ2 = −ǫ. Note that for u = 0, the system decouples into n 

noninteracting 1-component Ising spins. 

3. O(n) fixed point: The matrix 

 ǫ  

 
−ǫ − 6

(n + 8)  
 A = , 
 (n − 4)  

0 ǫ 
(n + 8) 

has eigenvalues λ1 = −ǫ, and λ2 = ǫ(n − 4)/(n + 8). Hence for n > 4 this fixed point has 

one stable an one unstable direction, while for n < 4 both eigendirections are stable. This 

fixed point thus controls the critical behavior of the system for n < 4. 

4. Cubic fixed point: The eigenvalues of 

 

(n + 8) 

 
− 

3 
− 2 

 ǫ 
A = 

  , 
−4

(n −
3

4) 
4 − n 

n 

are λ1 = ǫ(4 − n)/3n, λ2 = −ǫ. Thus for n < 4, this fixed point has one stable and one 

unstable direction, and for n > 4 both eigendirections are stable. This fixed point controls 

critical behavior of the system for n > 4. 
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In the (u,v) plane, v* = 0 for n < 4, and the cubic term is irrelevant, i.e., fluctuations 

restore full rotational symmetry. For n > 4, v is relevant, resulting in the following flows: 

(c) Find the recursion relation for the reduced temperature, t ,  and calculate the exponent 
I /  at t,he &able fixed point,s for n < 4 and n > 4. 

Up to linear order in t, the following diagrams contribute to the determination off :  
After linearizing in the vicinity of the stable fixed points, the exponent yt is given by 

(n + 2, c +  1 0 ( t 2 )  for n < 4 
yt = 2 - 4C[(n$ 2 ) ~ *$ 3u*],+v = - = 

Y? 
t 

6n 
+ O(t2)  for n > 4 

(d) Is the region of stability in the (u,v) plane calculated in part (b) of the previous 

problem enhanced or diminished by inclusion of fluctuations? Since in reality higher order 

terms will be present, what does this imply about the nature of the phase transition for a 
small negative v and n > 4? 

All iixed points are located within the allowed region calculated in lb).  However, not 
all flows starting in classically stable regions are attracted to stable fixed point. If the RG 



flows take a point outside the region of stability, then fluctuations decrease the region of 

stability. The domains of attraction of the fixed points for n < 4 and n > 4 are indicated 

in the following figures: 

Flows which are not originally located within these domains of attraction flow into 

the unphysical regions. The coupling constants u and v become more negative. This is 
the signal of a fluctuation induced first order phase transition, by what is known as the 

Coleman-Weinberg mechanism. Fluctuations are responsible for the change of order of the 

transition in the regions of the (u,v)plane outside the domain of attraction of the stable 
fixed points. 

(e) Draw schematic phase diagrams in the ( t , v )  plane ( u  > 0 )  for n > 4 and n < 4, 

identifying the ordered phases. Are there Goldstone modes in any of these phases close to 

the phase transition? 

From the recursion relation obtained in 2c) for the parameter t ,  we obtain the following 
non-trivial t* 

1
t* = - [ ( n$2)u* f  3v*]K t 

2 

Therefore, the phase diagrams in the ( t ,v )plane is schematically represented as 

As mentioned above, only when n < 4 fluctuations restore the full rotational symme-

try. The parameter v is renormalized to zero, and there are Goldstone modes at the (u,v) 

plane, but only near the second order phase transition, where 116;' = t v / ( u+ v )  i 0 .  In 

the ordered phases, the renormalized value of v is finite, albeit small, indicating that there 

are no Goldstone modes. 
******** 

7. Cumulant method: Apply the Niemeijer-van Leeuwen first order cumulant expansion 
to the Ising model on a square lattice with P ' H  = K C,,ij>gigj,by following these steps: 



I diao / red  phase 

isotropic order diagonal order 

second order b p a k  

cubic axis order cubic axis order 

(a) For an RG with b = 2,  divide the bonds into intra-cell components mo;and inter-cell 

components U .  

The N sites of the square lattice are partitioned into N/4 cells as indicated in the 
figure below (the intra-cell and inter-cell bonds are represented by solid and dashed lines 

respectively). 

.. . . . .. . . . .. .. . .. .. . . . . ~ .. . . . .. . . . .. . . . .. .. . . . ~ ... . . . .. . . . .. . . . .. .. .: 

The renormalized Hamiltonian m'[a&]is calculated from 

where indicates expectation values calculated with the weight exp(-fixo) at tixed [a&]. 

+
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(b) For each cell a,  define a renormalized spin a&= sign(aA + a: + a: + 
c:=~

a;). This choice 

becomes ambiguous for configurations such that a; = 0. Distribute the weight of 

these configurations equally between a&= +1 and 1 (i.e. put a factor of 112 in addition 
to the Boltzmann weight). Make a table for all possible configurations of a cell, the internal 

probability exp ( -mo) ,  and the weights contributing to a&= *I. 
The possible intracell configurations compatible with a renormalized spin a&= *I, and 

their corresponding contributions to the intra-cell probability exp ( -mo) ,  are given below, 

resulting in 

Zo [a&]= n (e4K + 6 + e C 4 K )  = (e4K + 6 + e C 4 K ) N 1 4 .  

(c) Express (U)o in terms of the cell spins a&;and hence obtain the recursion relation 

K'(K). 
The first cumulant of the interaction term is 



( 
∑ 

( ) ( ) 

∑ 

α β 

1 12 

34 

2 

34 

where, for σα 
′ = 1, 

e4K + (3 − 1) + 0 + 0 e4K + 2 �σαi�0 = 
(e4K + 6 + e−4K) 

=
(e4K + 6 + e−4K) 

. 

Clearly, for σα 
′ = −1 we obtain the same result with a global negative sign, and thus 

e4K + 2 
α�σαi�0 = σ ′ 

(e4K + 6 + e−4K) 
. 

As a result, 

N ( ) e4K + 2 
)2 

−βH ′ [σα
′ ] =

4
ln e 4K + 6 + e −4K + 2K

e4K + 6 + e−4K 
σα
′ σβ

′ , 
〈α,β〉 

corresponding to the recursion relation K ′ (K), 

( )2 
e4K + 2 

K ′ = 2K . 
e4K + 6 + e−4K 

(d) Find the fixed point K∗, and the thermal eigenvalue yt. 

To find the fixed point with K ′ = K = K∗, we introduce the variable x = e4K∗ 

. Hence, • 
we have to solve the equation 

x + 2 1 2 = , or x = 0, 
x + 6 + x−1 

√
2 

√
2 − 1 − 6 − 2

√
2 x − 1 

whose only meaningful solution is x ≃ 7.96, resulting in K∗ ≃ 0.52. 

To obtain the thermal eigenvalue, let us linearize the recursion relation around this 

non-trivial fixed point, 

∂K ′ ∣
∣ [ 

e4K∗ 

e4K∗ 

e−4K∗ ] 
∣ = , = 1 + 8K ∗ 

−
, yt ≃ 1.006. 

∣ 4K∗ 4K∗ −4K∗ ∂K K∗ 

byt ⇒ 2yt 

e + 2 
−
e + 6 + e

⇒ 

(e) In the presence of a small magnetic field h i σi , find the recursion relation for h; and 

calculate the magnetic eigenvalue yh at the fixed point. 

• In the presence of a small magnetic field, we will have an extra contribution to the 

Hamiltonian 
∑ e4K + 2 ∑ 

h �σα,i�0 = 4h 
(e4K + 6 + e−4K) 

σ ′ .α 

α,i α 
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∑ 

• 
{ 

( ) 

Therefore, 
e4K + 2 

h ′ = 4h . 
(e4K + 6 + e−4K) 

(f) Compare K∗ , yt, and yh to their exact values. 

The cumulant method gives a value of K∗ = 0.52, while the critical point of the Ising • 
model on a square lattice is located at Kc ≈ 0.44. The exact values of yt and yh for the two 

dimensional Ising model are respectively 1 and 1.875, while the cumulant method yields 

yt ≈ 1.006 and yh ≈ 1.5. As in the case of a triangular lattice, yh is lower than the exact 

result. Nevertheless, the thermal exponent yt is fortuitously close to its exact value. 

******** 

8. Migdal–Kadanoff method: Consider Potts spins si = (1, 2, , q), on sites i of a · · · 
hypercubic lattice, interacting with their nearest neighbors via a Hamiltonian 

−βH = K δsi,sj 
. 

<ij> 

(a) In d = 1 find the exact recursion relations by a b = 2 renormalization/decimation 

process. Indentify all fixed points and note their stability. 

In d = 1, if we average over the q possible values of s1, we obtain 
q 2K 

′
∑ 

e K(δσ1s1 +δs1σ2 ) = 
q − 1 + e if σ1 = σ2 

= eg +K ′ δσ1σ2 , 
q − 2 + 2e K if σ1 =� σ2s1=1 

from which we arrive at the exact recursion relations: 

e
e K ′ = 

q − 1 + 2K 

, eg ′ = q − 2 + 2e K . 
q − 2 + 2eK 

To find the fixed points we set K ′ = K = K∗ . As in the previous problem, let us 

introduce the variable x = eK∗ 

. Hence, we have to solve the equation 

x = 
q − 1 + x2 

, or x 2 + (q − 2)x − (q − 1) = 0, 
q − 2 + 2x 

whose only meaningful solution is x = 1, resulting in K∗ = 0. To check its stability, we 

consider K ≪ 1, so that 

q + 2K + 2K2 K2 

K ′ ≃ ln 
q + 2K +K2 

≃ 
q 

≪ K, 

which indicates that this fixed point is stable. 

In addition, K∗ → ∞ is also a fixed point. If we consider K ≫ 1,


′ 1

e K ≃

2 
e K , = ⇒ K ′ = K − ln 2 < K, 

which implies that this fixed point is unstable. 

** 
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(b) Write down the recursion relation K ′ (K) in d–dimensions for b = 2, using the Migdal– 

Kadanoff bond moving scheme. 

• In the Migdal-Kadanoff approximation, moving bonds strengthens the remaining bonds 

by a factor 2d−1 . Therefore, in the decimated lattice we have 

′ q − 1 + e2×2d−1K 
K e = . 

q − 2 + 2e2d−1K 

(c) By considering the stability of the fixed points at zero and infinite coupling, prove the 

existence of a non–trivial fixed point at finite K∗ for d > 1. 

In the vicinity of the fixed point K∗ = 0, i.e. for K ≪ 1, • 

22d−2K2


K ′ ≃ 
q 

≪ K,


and consequently, this point is again stable. However, for K∗ → ∞, we have 

′ 1 
e K ≃

2
exp 

[( 
2d − 2d−1

) 
K 
] 
, = ⇒ K ′ = 2d−1K − ln 2 ≫ K, 

which implies that this fixed point is now stable provided that d > 1. 

As a result, there must be a finite K∗ fixed point, which separates the flows to the other • 
fixed points. 

*** 
(d) For d = 2, obtain K∗ and yt, for q = 3, 1, and 0. 

• Let us now discuss a few particular cases in d = 2. For instance, if we consider q = 3, 

the non-trivial fixed point is a solution of the equation 

2 + x4 

x =
1 + 2x2

, or x 4 − 2x 3 − x + 2 = (x − 2)(x 3 − 1) = 0, 

which clearly yields a non-trivial fixed point at K∗ = ln 2 ≃ 0.69. The thermal exponent 

for this point 

∂K ′ ∣
∣ [ 

e4K ∗ e2K ∗ 
] 

16 

∂K 
∣

∣ 
K∗ 

= 2yt = 4 
e4K∗ + 2 

−
1 + 2e2K∗ 

=
9 
, = ⇒ yt ≃ 0.83, 

which can be compared to the exact values, K∗ = 1.005, and yt = 1.2. 

By analytic continuation for q 1, we obtain →
4K 

K ′ e
e = . −1 + 2e2K 
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∣ 

[ ] 

The non-trivial fixed point is a solution of the equation


4 

x = 
x

, or (x 2 + 1) = (x − 1)(x x − 1) = 0, −1 + 2x2
3 − 2x 2 −

whose only non-trivial solution is x = (1 + 
√

5)/2 = 1.62, resulting in K∗ = 0.48. The 

thermal exponent for this point 

∂K ′ ∣
∣ 

2yt −K∗ 

∂K 
∣ 
K∗ 

= = 4 1 − e , = ⇒ yt ≃ 0.61. 

As discussed in the next problem set, the Potts model for q 1 can be mapped onto the →
problem of bond percolation, which despite being a purely geometrical phenomenon, shows 

many features completely analogous to those of a continuous thermal phase transition. 

And finally for q 0, relevant to lattice animals (see PS#9), we obtain →

′ −1 + e4K 
K e = , −2 + 2e2K 

for which we have to solve the equation 

−1 + x4 

x = −2 + 2x2
, or x 4 − 2x 3 + 2x − 1 = (x − 1)3(x + 1) = 0, 

whose only finite solution is the trivial one, x = 1. For q 0, if K ≪ 1, we obtain →

K2 

K ′ ≃ K + > K, 
2 

indicating that this fixed point is now unstable. Note that the first correction only indicates 

marginal stability (yt = 0). Nevertheless, for K∗ → ∞, we have 

′ 1 
e K ≃

2
exp[2K], = ⇒ K ′ = 2K − ln 2 ≫ K, 

which implies that this fixed point is stable. 

* * 
********


9. The Potts model: The transfer matrix procedure can be extended to Potts model, 

where the spin si on each site takes q values si = (1, 2, , q); and the Hamiltonian is 
∑N 

· · · 
−βH = K δsi,si+1 +KδsN ,s1 .i=1 
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( ) 

(a) Write down the transfer matrix and diagonalize it. Note that you do not have to solve 

a qth order secular equation as it is easy to guess the eigenvectors from the symmetry of 

the matrix. 

• The partition function is 

Z = < s1|T |s2 >< s2|T |s3 > · · · < sN−1|T |sN >< sN |T |s1 >= tr(T N ), 
{si} 

where < si|T |sj >= exp Kδsi,sj 
is a q × q transfer matrix. The diagonal elements of the 

matrix are eK , while the off-diagonal elements are unity. The eigenvectors of the matrix 

are easily found by inspection. There is one eigenvectors with all elements equal; the 

corresponding eigenvalue is λ1 = eK +q −1. There are also (q −1) eigenvectors orthogonal 

to the first, i.e. the sum of whose elements is zero. This corresponding eigenvalues are 

degenerate and equal to eK − 1. Thus 

Z = 
∑ 

λN = 
( 
e K + q − 1 

)N 
+ (q − 1) 

( 
e K 

)N 
.α − 1 

α 

(b) Calculate the free energy per site. 

• Since the largest eigenvalue dominates for N ≫ 1, 

lnZ ( ) 
= ln e K + q − 1 . 

N 

(c) Give the expression for the correlation length ξ (you don’t need to provide a detailed 

derivation), and discuss its behavior as T = 1/K 0. →
• Correlations decay as the ratio of the eigenvalues to the power of the separation. Hence 

the correlation length is 

[ ( )]−1 [ ( )]−1 
λ1 eK + q − 1 

ξ = ln = ln . 
λ2 eK − 1 

In the limit of K → ∞, expanding the above result gives 

eK 1 
( 

1 
) 

= exp .ξ ≃ 
q q T 

******** 
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