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VII.B Topological Defects in the XY model 

As stated in the previous section, thermal excitation of Goldstone modes destroys 

spontaneous order in two dimensional models with a broken continuous symmetry. The RG 

study of the non-linear σ-model confirms that the transition temperature of n-component 

spins vanishes as T ∗ = 2πǫ/(n − 2) for ǫ = (d − 2) → 0. However, the same RG procedure 

appears to suggest a different behavior for n = 2. The first indication of unusual behavior 

for the two dimensional XY model (n = 2), appeared in an analysis of high temperature 

series by Stanley and Kaplan in 1966. The series results strongly suggested the divergence 

of susceptibility at a finite temperature, seemingly in contradiction with the absence of 

symmetry breaking. It was indeed this contradiction that led Wigner to explore the pos

sibility of a phase transition without symmetry breaking. The Z2 lattice gauge theory, 

discussed in sec.VI.E as the dual of the three dimensional Ising model, realizes such a 

possibility. The two phases of the Z2 gauge theory are characterized by different func

tional forms for the decay of an appropriate correlation function (the Wilson loop). We 

can similarly examine the asymptotic behavior of the spin-spin correlation functions of the 

XY model at high and low temperatures. 

A high temperature expansion for the correlation function for the XY model on a 

lattice is constructed from 

1 
N 2π dθi K 

∑ 
cos(θi−θj)
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∏
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(VII.35) 

The expansion for the partition function is similar, except for the absence of the factor 

cos(θ0 − θr). To the lowest order in K, each bond on the lattice contributes either a factor 

of one, or K cos(θi − θj). Since, 

∫ 2π dθ1 
cos (θ1 − θ2) = 0, (VII.36) 

2π0 

any graph with a single bond emanating from an internal site vanishes. For the numerator 

of eq.(VII.35) to be non-zero, there must be bonds originating from the external points at 

0 and r. Integrating over an internal point with two bonds leads to 

∫ 2π dθ2 1 
cos (θ1 − θ2) cos (θ2 − θ3) = cos (θ1 − θ3) . (VII.37) 

2π 20 
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The first graph that contributes to eq.(VII.35) is the shortest path (of length r) connecting 

the points 0 and r. Since integrating over the end points gives 

∫ 2π dθ0dθr 2 1 

(2π)2 
cos (θ0 − θr) =

2
, (VII.38) 

0 

each bond along the path contributes (K/2). (In constructing graphs for the partition 

function, there is an additional factor of 2 for every loop.) Thus to lowest order 

( )r
K −r/ξ 1 

〈~s0 · ~sr〉 ≈ = e , with ξ ≈ , (VII.39) 
2 ln (2/K)

and the disordered high temperature phase is characterized by an exponential decay of 

correlations. (This is clearly quite generic in all spin systems.) 

At low temperatures, the cost of small fluctuations around the ground state is ob

tained by a quadratic expansion, which gives K 
∫ 
dd x(∇θ)2/2 in the continuum limit. The 

standard rules of Gaussian integration yield, 

〈~s0 · ~sr〉 = 
〈 
ℜe i(θ0 −θr) 

〉 
= ℜ exp − 

1 〈 
(θ0 − θr)

2 
〉 

. (VII.40) 
2 

In two dimensions, the Gaussian fluctuations grow as 

1 2 1 r 
(θ0 − θr) = ln , (VII.41) 

2 2πK a 

where a is a short distance cut-off (of the order of the lattice spacing). Hence, at low 

temperatures, 
1 a 2πK 

〈~s0 · ~sr〉 ≈ , (VII.42) 
r 

i.e. the decay of correlations is algebraic rather than exponential. A power law decay of 

correlations implies self–similarity (no correlation length), and is usually associated with 

a critical point. Here it arises from the logarithmic growth of angular fluctuations, which 

is specific to two dimensions. 

The distinct asymptotic decays of correlations at high and low temperatures allows 

for the possibility of a finite temperature phase transition separating the two regimes. 

However, the arguments put forward above are not specific to the XY model. Any contin

uous spin model will exhibit exponential decay of correlations at high temperature, and a 

power law decay in a low temperature Gaussian approximation. To show that the Gaus

sian behavior persists at finite temperatures, we must prove that it is not modified by the 
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additional terms in the gradient expansion. Quartic terms, such as 
∫ 
dd x(∇θ)4, generate 

interactions between the Goldstone modes. The relevance of these interactions was probed 

in the previous section using the non-linear σ-model. The zero temperature fixed point in 

d = 2 is unstable for all n > 2, but apparently stable for n = 2. (There is only one branch 

of Goldstone modes for n = 2. It is the interactions between different branches of these 

modes for n > 2 that leads to instability towards high temperature behavior.) The low 

temperature phase of the XY model is said to posses quasi–long range order, as opposed 

to true long range order that accompanies a finite magnetization. 

What is the mechanism for the disordering of the quasi–long range ordered phase? As 

the RG study suggests that higher order terms in the gradient expansion are not relevant, 

we must search for other operators. The gradient expansion describes the energy cost of 

small deformations around the ground state, and applies to configurations that can be 

continuously deformed to the uniformly ordered state. Kosterlitz and Thouless (1973) 

suggested that the disordering is caused by topological defects that can not be regarded 

as simple deformations of the ground state. Since the angle describing the orientation 

of a spin is undefined up to an integer multiple of 2π, it is possible to construct spin 

configurations for which in going around a closed path the angle rotates by 2πn. The 

integer n is the topological charge enclosed by the path. Because of the discrete nature of 

this charge, it is impossible to continuously deform to the uniformly ordered state in which 

the charge is zero. (More generally, topological defects arise in any model with a compact 

group describing the order parameter.) 

The elementary defect, or vortex, has unit charge. In completing a circle centered 

on the defect the orientation of the spin changes by ±2π. If the radius r, of the circle 

is sufficiently large, the variations in angle will be small and the lattice structure can be 

ignored. By symmetry, ∇θ has a uniform magnitude, and points along the circle (i.e. 

perpendicular to the radial vector). The magnitude of the distortion is obtained from 

dθ dθ n 
∇θ · d~s = (2πr) = 2πn, =⇒ = . (VII.43) 

ds ds r 

Since ∇θ is a radial vector, it can be written as


y x n 
∇θ = n − 

2 
, + 

2 
, 0 = − r̂ × ẑ = −n∇× (ẑ ln r) . (VII.44) 

r r r 

Here, r̂ and ẑ are unit vectors respectively in the plane and perpendicular to it, and ~a ×~b 

indicates the cross product of the two vectors. This (continuum) approximation fails close 

to the center (core) of the vortex, where the lattice structure is important. 
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The energy cost of a single vortex of charge n has contributions from the core region, 

as well as from the relatively uniform distortions away from the center. The distinction 

between regions inside and outside the core is arbitrary, and for simplicity, we shall use a 

circle of radius a to distinguish the two, i.e. 

βEn =βE
0 
n(a) + 

K
d2 x(∇θ)2 

2 a 

=βEn
0 (a) + 

K 
∫ L 

(2πrdr) 
(n )2 

= βEn
0 (a) + πKn2 ln 

( 
L 
) 

. 

(VII.45) 

2 r aa 

The dominant part of the energy comes from the region outside the core, and diverges 

with the size of the system, L. The large energy cost of defects prevents their spontaneous 

formation close to zero temperature. The partition function for a configuration with a 

single vortex is 

( )2 [ ( )] ( )2−πKn2 

Z1(n) ≈ 
L 

exp −βEn
0 (a) − πKn2 ln 

L 
= yn

0 (a) 
L

, (VII.46) 
a a a 

where (L/a)2 results from the configurational entropy of possible vortex locations in an 

area of size L2 . The entropy and energy of a vortex both grow as lnL, and the free energy 

is dominated by one or the other. At low temperatures (large K) energy dominates and 

Z1, a measure of the weight of configurations with a single vortex, vanishes. At high 

enough temperatures, K < Kn = 2/(πn2), the entropy contribution is large enough to 

favor spontaneous formation of vortices. On increasing temperature, the first vortices to 

appear correspond to n = ±1 at Kc = 2/π. Beyond this point there are many vortices in 

the system, and eq.(VII.46) is no longer useful. 

The coupling Kc = 2/π is a lower bound for the stability of the system to topological 

defects. This is because pairs (dipoles) of defects may appear at larger couplings. Consider 

a pair of charges ±1 at a separation d. The distortions far away from the dipole center, 

r ≫ d, can be obtained by superposing those of the individual vortices, and 

∇θ = ∇θ+ + ∇θ− ≈ d~ · ∇ 
r̂ × ẑ

, (VII.47) 
r 

decays as d/r2 . Integrating this distortion leads to a finite energy, and hence dipoles 

appear with the appropriate Boltzmann weight at any temperature. The low temperature 

phase should thus be visualized as a gas of tightly bound dipoles. The number (and size) of 

dipoles increases with temperature, and the high temperature state is a plasma of unbound 

124




〈 〉 

∮ ∫ 

∑ 

∑ 

∑ 

∫ 
[ ] 

vortices. The distinction between the two regimes can be studied by examining a typical 

net topological charge, Q(ℓ), in a large area of dimension ℓ ≫ a. The average charge 

in always zero, while fluctuations in the low temperature phase are due to the dipoles 

straddling the parameter, i.e. Q(ℓ)2 ∝ ℓ. In the high temperature state, charges of 

either sign can appear without restriction and 
〈 
Q(ℓ)2

〉 
∝ ℓ2 . (Note the similarity to the 

distinct behaviors of the Wilson loop in the high and low temperature phases of the Z2 

gauge theory.) 

To describe the transition between the two regimes, we need to properly account 

for the interactions between vortices. The distortion field ~u ≡ ∇θ, in the presence of a 

collection of vortices is similar to the velocity of a fluid. In the absence of vorticity, the 

flow is potential, i.e. ~u = ~u0 = ∇φ, and ∇× ~u0 = 0. The topological charge can be related 

to ∇× ~u by noting that for any closed path, 

~u · d~s = (d2 x ẑ) · ∇ × ~u , (VII.48) 

where the second integral is over the area enclosed by the path. Since the left hand side is 

an integer multiple of 2π, we can set 

∇× ~u = 2πẑ ni δ
2(x − xi), (VII.49) 

i 

describing a collection of vortices of charge {ni} at locations {xi}. The solution to 

eq.(VII.49) can be obtained by setting ~u = ~u0 −∇× (ẑψ), leading to 

∇× ~u = ẑ∇2ψ, =⇒ ∇2ψ = 2π ni δ
2(x − xi). (VII.50) 

i 

Thus ψ behaves like the potential due to a set of charges {2πni}. The solution, 

ψ(x) = ni ln (|x − xi|) , (VII.51) 
i 

is simply a superposition of the potentials as in eq.(VII.44). 

Any two dimensional distortion can thus be written as 

~u = ~u0 + ~u1 = ∇φ −∇× (ẑψ), (VII.52) 

and the corresponding “kinetic energy”, βH = K 
∫ 
d2x |~u|2/2, decomposed as 

βH = d2 x (∇φ)
2 
− 2∇φ · ∇ × (ˆ zψ)

2 
. (VII.53) zψ) + (∇× ˆ
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The second term vanishes, since following an integration by parts,


− d2 x ∇φ · zψ) = d2 x φ∇ · (∇× ˆ (VII.54) ∇× (ˆ zψ) , 

and ∇·∇× ~u = 0 for any vector. The third term in eq.(VII.53) can be simplified by noting 

that ∇ψ = (∂xψ, ∂yψ, 0), and ∇× (ẑψ) = (−∂yψ, ∂xψ, 0), are orthogonal vectors of equal 

length. Hence 

βH1 ≡ 
K

d2 x (∇× ˆ
2 

= 
K

d2 x (∇ψ)
2 

= − 
K

d2 x ψ∇2ψ, zψ) (VII.55) 
2 2 2 

where the second identity follows an integration by parts. Equations (VII.50) and (VII.51) 

now result in 

  
( ) 

∫ 
βH1 = − 

K 
2 

d2 x 
∑ 

ni ln (|x − xi|) 2π 
∑ 

nj δ
2(x − xj) 

i j (VII.56) 
∑ 

= − 2π2K ninj C(xi − xj), 
i,j 

where C(x) = ln(|x|)/2π is the two dimensional Coulomb potential. There is a difficulty 

with the above result for i = j due to the divergence of the logarithm at small arguments. 

This is a consequence of the breakdown of the continuum treatment at short distances. 

The self-interaction of a vortex is simply its core energy βE0 
n, and 

βH1 = βE0 
ni 

− 4π2K ninjC(xi − xj). (VII.57) 
i i<j 

The configuration space of the XY model close to zero temperature can thus be parti

tioned into different topological segments. The degrees of freedom in each segment are the 

charges {ni}, and locations {xi}, of the vortices, in addition to the field φ(x) describing 

spin waves. The partition function of the model can thus be approximated as 

  
∫ 2π 

∏ dθi 
∑ 

Z = exp K cos(θi − θj) 
2π0i <i,j> 

−K 
∫ 

d2 
x (∇φ)2 ∑ 

− 
∑ 

βE0 
+4π2K 

∑ 
ninjC(xi−xj) (VII.58) 

∝ Dφ(x) e 2 d2 xi e i ni i<j 

{ni} 

≡ Zs.w.ZQ , 
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where Zs.w. is the Gaussian partition function of spin waves, and ZQ is the contribution of 

vortices. The latter describes a grand canonical gas of charged particles, interacting via the 

two dimensional Coulomb interaction. In calculating the Hamiltonian βH1 in eq.(VII.55), 

we performed an integration by parts. The surface integral that was ignored in the process 

in fact grows with system size as ( i ni) lnL. Thus only configurations that are overall 

neutral are included in calculating ZQ. We further simplify the problem by considering 

only the elementary excitations with ni = ±1, which are most likely at low temperatures 

due to their lower energy. Setting y0 ≡ exp 
[ 
−βE0 ] ,±1 

  
∞ ∫ N 

ZQ = y0 
N d2 xi exp 4π2K qiqjC(xi − xj) , (VII.59) 

N=0 i=1 i<j 

where qi = ±1, and i qi = 0. 
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