Organizational Remarks:

PS \#2, 1b:
Correction: Plot k_{a} and k_{b} for $L=0 \ldots 2 / K_{L}$ (NOT: Plot k_{a} and k_{b} for $L=0 \ldots 2 K_{L}$)

Tomorrow's recitation topic:
‘PS \#2 support’

Dynamical response of switches, chemotactic network and oscillators

‘switch’

adaptation
(differentiator, at least for small frequencies)
oscillator

Dynamical response of switches,

chemotactic network and oscillators

two stable fixed points

one stable fixed point
unstable fixed point

nullclines:

$$
\begin{aligned}
u & =\frac{\alpha_{1}}{1+v^{\beta}} \\
v & =\frac{\alpha_{2}}{1+u^{\gamma}}
\end{aligned}
$$

Image removed due to copyright considerations.

Adaptation (one stable fixed point)

$$
\begin{aligned}
& \dot{x}=-\left(k_{p t}+k_{\text {eff } 4}\right) x+k_{\text {eff } 2} y+r_{\text {in }} \\
& \dot{y}=k_{p t} x-k_{\text {eff } 2} y+r_{\text {in }}
\end{aligned}
$$

Oscillator (unstable fixed point)

Oscillators continued

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

model for glycolysis

$$
\begin{aligned}
& y=\frac{x}{a+x^{2}} \\
& y=\frac{b}{a+x^{2}} \\
& x^{*}=b
\end{aligned}
$$

fixed point:

$$
y^{*}=\frac{b}{a+b^{2}}
$$

X

limitcycle

time

Image removed due to copyright considerations. See figures 1, 2, 3 in Elowitz, M. B., S. Leibler.
"A synthetic oscillatory network of transcriptional regulators." Nature 403, no. 6767
(Jan 20, 2000): 335-8.

