MIT OpenCourseWare
http://ocw.mit.edu

8.821 String Theory

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8.821 F2008 Lecture 13: Masses of fields and dimensions of operators

Lecturer: John McGreevy

December 16, 2008

In today's lecture we will talk about:

1. AdS wave equation near the boundary.
2. Masses and operator dimensions: $\Delta(\Delta-D)=m^{2} L^{2}$.

Erratum: The massive geodesic equation $\ddot{x}+\Gamma \dot{x} \dot{x}=0$ assumes that the dot differentiates with respect to proper time.

Recap: Consider a scalar in AdS_{p+2} (where $p+1$ is the number of spacetime dimensions that the field theory lives in). Let the metric be:

$$
\begin{equation*}
d s^{2}=L^{2} \frac{d z^{2}+d x^{\mu} d x_{\mu}}{z^{2}}, \tag{1}
\end{equation*}
$$

then the action takes the form:

$$
\begin{equation*}
S[\phi]=-\frac{\kappa}{2} \int d^{p+1} x \sqrt{g}\left((\partial \phi)^{2}+m^{2} \phi^{2}+b \phi^{3}+\ldots\right), \tag{2}
\end{equation*}
$$

where $(\partial \phi)^{2} \equiv g^{A B} \partial_{A} \phi \partial_{B} \phi$ and $x^{A}=\left(z, x^{\mu}\right)$. Our goal is to evaluate:

$$
\begin{equation*}
\ln \left\langle\exp ^{-\int d^{D} x \phi_{0} O_{\rangle_{C F T}}=\operatorname{extremum}_{\left[\phi \mid \phi \rightarrow \phi_{0} \text { at } z=\epsilon\right]} S[\phi], ., ~}\right. \tag{3}
\end{equation*}
$$

where $S[\phi] \equiv S\left[\phi^{*}\left(\phi_{0}\right)\right] \equiv W\left[\phi_{0}\right]$, i.e. by using the solution to the equation of motion subject to boundary conditions. Now Taylor expand:

$$
\begin{equation*}
W\left[\phi_{0}\right]=W[0]+\int d^{D} x \phi_{0}(x) G_{1}(x)+\frac{1}{2} \iint d^{D} x_{1} d^{D} x_{2} \phi_{0}\left(x_{1}\right) \phi_{0}\left(x_{2}\right) G_{2}\left(x_{1}, x_{2}\right)+\ldots \tag{4}
\end{equation*}
$$

where

$$
\begin{array}{r}
G_{1}(x)=\langle O(x)\rangle=\left.\frac{\delta W}{\delta \phi_{0}(x)}\right|_{\phi_{0}=0}, \\
G_{2}(x)=\left\langle O\left(x_{1}\right) O\left(x_{2}\right)\right\rangle_{c}=\left.\frac{\delta^{2} W}{\delta \phi_{0}\left(x_{1}\right) \delta \phi_{0}\left(x_{2}\right)}\right|_{\phi_{0}=0} . \tag{6}
\end{array}
$$

Now if there is no instability, then ϕ_{0} is small and so is ϕ, so you can ignore third order terms in ϕ. From last time:

$$
\begin{equation*}
S[\phi]=\frac{\kappa}{2} \int_{A d S_{p+2}} d^{p+2} x \sqrt{g}\left[\phi\left(-\nabla^{2}+m^{2}\right) \phi+\mathcal{O}\left(\phi^{3}\right)\right]-\frac{\kappa}{2} \int_{\partial A d S} d^{p+1} x \sqrt{\gamma} \phi(n . \partial) \phi, \tag{7}
\end{equation*}
$$

where the last term is the boundary action, n is a normalized vector perpendicular to the boundary and

$$
\begin{equation*}
\nabla^{2}=\frac{1}{\sqrt{g}} \partial_{A}\left(\sqrt{g} g^{A B} \partial_{B}\right) \tag{8}
\end{equation*}
$$

Now if the scalar field satisfies the wave equation:

$$
\begin{gather*}
\left(-\nabla^{2}+m^{2}\right) \phi^{*}=0, \tag{9}\\
W\left[\phi_{0}\right]=S_{b d y}\left[\phi^{*}\left[\phi_{0}\right]\right] \tag{10}
\end{gather*}
$$

then we can use translational invariance in $p+1$ dimensions, $x^{\mu} \rightarrow x^{\mu}+a^{\mu}$, in order to Fourier decompose the scalar field:

$$
\begin{equation*}
\phi\left(z, x^{\mu}\right)=e^{i k \cdot x} f_{k}(z) \tag{11}
\end{equation*}
$$

Now, substituting (11) into (9) and assuming that the metric only depends on z we get:

$$
\begin{align*}
0 & =\left(g^{\mu \nu} k_{\mu} k_{\nu}-\frac{1}{\sqrt{g}} \partial_{z}\left(\sqrt{g} g^{z z} \partial_{z}\right)+m^{2}\right) f_{k}(z) \tag{12}\\
& =\frac{1}{L^{2}}\left[z^{2} k^{2}-z^{D+1} \partial_{z}\left(z^{-D+1} \partial_{z}\right)+m^{2} L^{2}\right] f_{k} \tag{13}
\end{align*}
$$

where we have used $g^{\mu \nu}=(z / L)^{2} \delta^{\mu \nu}$. The solutions of (12) are Bessel functions but we can learn a lot without using their full form. For example, look at the solutions near the boundary (i.e. $z \rightarrow 0$). In this limit we have power law solutions, which are spoiled by the $z^{2} k^{2}$ term. Try using $f_{k}=z^{\Delta}$ in (12):

$$
\begin{align*}
0 & =k^{2} z^{2+\Delta}-z^{D+1} \partial_{z}\left(\Delta z^{-D+\Delta}\right)+m^{2} L^{2} z^{\Delta} \tag{14}\\
& =\left(k^{2} z^{2}-\Delta(\Delta-D)+m^{2} L^{2}\right) z^{\Delta}, \tag{15}
\end{align*}
$$

and for $z \rightarrow 0$ we get:

$$
\begin{equation*}
\Delta(\Delta-D)=m^{2} L^{2} \tag{16}
\end{equation*}
$$

The two roots for (16) are

$$
\begin{equation*}
\Delta_{ \pm}=\frac{D}{2} \pm \sqrt{\left(\frac{D}{2}\right)^{2}+m^{2} L^{2}} . \tag{17}
\end{equation*}
$$

Comments

- The solution proportional to $z^{\Delta_{-}}$is bigger near $z \rightarrow 0$.
- $\Delta_{+}>0 \forall m$, therefore $z^{\Delta_{+}}$decays near the boundary.
- $\Delta_{+}+\Delta_{-}=D$.

Next, we want to improve the boundary conditions that allow solutions, so take:

$$
\begin{equation*}
\left.\phi(x, z)\right|_{z=\epsilon}=\phi_{0}(x, \epsilon)=\epsilon^{\Delta_{-}} \phi_{0}^{R e n}(x), \tag{18}
\end{equation*}
$$

where $\phi_{0}^{\text {Ren }}$ is the renormalized field. Now with this boundary condition, $\phi(z, x)$ is finite when $\epsilon \rightarrow 0$, since $\phi_{0}^{R e n}$ is finite in this limit.

Wavefunction renormalization of O (Heuristic but useful)
Suppose:

$$
\begin{align*}
S_{b d y} & \ni \int_{z=\epsilon} d^{p+1} x \sqrt{\gamma_{\epsilon}} \phi_{0}(x, \epsilon) O(x, \epsilon) \tag{19}\\
& =\int d^{D} x\left(\frac{L}{\epsilon}\right)^{D}\left(\epsilon^{\Delta_{-}} \phi_{0}^{R e n}(x)\right) O(x, \epsilon), \tag{20}
\end{align*}
$$

where we have used $\sqrt{\gamma}=(L / \epsilon)^{D}$. Demanding this to be finite as $\epsilon \rightarrow 0$ we get:

$$
\begin{align*}
O(x, \epsilon) & \sim \epsilon^{D-\Delta_{-}} O^{R e n}(x) \tag{21}\\
& =\epsilon^{\Delta_{+}} O^{R e n}(x), \tag{22}
\end{align*}
$$

where in the last line we have used $\Delta_{+}+\Delta_{-}=D$. Therefore, the scaling of $O^{R e n}$ is $\Delta_{+} \equiv \Delta$.

Comments

- We will soon see that $\langle O(x) O(0)\rangle \sim \frac{1}{|x|^{2} \Delta}$.
- We had a second order ODE, therefore we need two conditions in order to determine a solution (for each k). So far we have imposed:

1. For $z \rightarrow \epsilon, \phi \sim z^{\Delta_{-}} \phi_{0}+($ terms subleading in $z)$. Now we will also impose
2. ϕ regular in the interior of AdS (i.e. at $z \rightarrow \infty$).

Comments on Δ

1. The $\epsilon^{\Delta_{-}}$factor is independent of k and x, which is a consequence of a local QFT (this fails in exotic examples).
2. Relevantness: Since $m^{2}>0 \Longrightarrow \Delta \equiv \Delta_{+}>D$, so O_{Δ} is an irrelevant operator. This means that if you perturb the CFT by adding O_{Δ} to the Lagrangian, then:

$$
\begin{equation*}
\Delta S=\int d^{D} x(\mathrm{mass})^{D-\Delta} O_{\Delta} \tag{23}
\end{equation*}
$$

where the exponent is negative, so the effects of such an operator go away in the IR. For example, consider a dilaton mode with $l>0$, its mass is given by (for $D=4$):

$$
\begin{equation*}
m^{2}=\frac{(l+4) l}{L^{2}} \tag{24}
\end{equation*}
$$

The operator corresponding to this is:

$$
\begin{equation*}
\operatorname{tr}\left(F^{2} X^{i_{1} \ldots i_{l}}\right), \tag{25}
\end{equation*}
$$

with $\Delta=4+l>D$, therefore it is an irrelevant operator. Now consider a dilaton mode with $l=0$: then $m^{2}=0$, therefore, $\Delta=D$ and hence it corresponds to a marginal operator (an example of such operator is the Lagrangian). If $m^{2}<0$, then $\Delta<D$, so it corresponds to a relevant operator, but it is ok if m^{2} is not too negative ("Breitenlohner - Freedmasn (BF) allowed tachyons" with $\left.-\left|m_{B F}\right|^{2} \equiv-(D / 2 L)^{2}<m^{2}\right)$.
3. Instability: This occurs when a renormalizable mode grows with time without a source. But in order to have $S[\phi]<\infty$, the solution must fall off at the boundary. This requires a gradient energy that $\sim \frac{1}{L}$. Note:

$$
\begin{equation*}
\Delta_{ \pm}=\frac{D}{2} \pm \sqrt{\left(\frac{D}{2}\right)^{2}+m^{2} L^{2}} \tag{26}
\end{equation*}
$$

If:

$$
\begin{equation*}
m^{2} L^{2}<\left(\frac{D}{2}\right)^{2} \equiv-\left|m_{B F}\right|^{2} \tag{27}
\end{equation*}
$$

then $\Delta_{ \pm}$is complex, therefore we have $\Delta_{-}=D / 2$, which is larger than the unitary bound. In this case, $\phi \sim z^{\Delta_{-}}$decays near the boundary (i.e. in the UV). In order to see the instability that occurs when $m^{2} L^{2}<\left(\frac{D}{2}\right)^{2}$ more explicitly, rewrite (9) as a Schrodinger equation, by writing $\phi(z)=A(z) \psi(z)$, where we choose $A(z)$ in order to remove the first derivative of $\psi(z)$. Then, equation (9) becomes:

$$
\begin{equation*}
\left(-\partial_{z}^{2}+V(z)\right) \psi(z)=E \psi(z) \tag{28}
\end{equation*}
$$

where $E=\omega^{2}-k^{2}, V(z)=\sigma / z^{2}$ and $\sigma=m^{2} L^{2}-\left(D^{2}-1\right) / 4$. An instability occurs when $E<0$, i.e. $\omega^{2}<0$ and hence $\phi \sim e^{i \omega t} \phi(z)=e^{+|\omega| t} \phi(z)$ grows with time. Now the claim is that $V=\sigma / z^{2}$ has no negative energy states if $\sigma>-1 / 4$. Note that the notion of normalizability here and before are related (Pset 4):

$$
\begin{array}{r}
\|\psi\|^{2}=\int d z \psi^{\dagger} \psi<\infty \\
\text { and } S[\phi]=\int d z \sqrt{g}\left((\partial \phi)^{2}+m^{2}\right) \tag{30}
\end{array}
$$

4. The formula we found before (expression (16)) depends on the spin. For a j-form in AdS we have:

$$
\begin{equation*}
(\Delta+j)(\Delta+j-D)=m^{2} L^{2} . \tag{31}
\end{equation*}
$$

For example, for A_{μ} massless we have:

$$
\begin{equation*}
\Delta\left(j^{\mu}\right)=D-1 \rightarrow \text { conserved } \tag{32}
\end{equation*}
$$

for $g_{\mu \nu}$ massless we have:

$$
\begin{equation*}
\Delta\left(T^{\mu \nu}\right)=D \rightarrow \text { required from CFT. } \tag{33}
\end{equation*}
$$

