
MIT OpenCourseWare
http://ocw.mit.edu 

8.821 String Theory 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


� 

� � � 

8.821 F2008 Lecture 13: Masses of fields and dimensions of 

operators 

Lecturer: John McGreevy 

December 16, 2008 

In today’s lecture we will talk about: 

1. AdS wave equation near the boundary. 

2. Masses and operator dimensions: Δ(Δ −D) = m2L2 . 

Erratum: The massive geodesic equation ẍ + Γẋẋ = 0 assumes that the dot differentiates with 
respect to proper time. 

Recap: Consider a scalar in AdSp+2 (where p + 1 is the number of spacetime dimensions that the 
field theory lives in). Let the metric be: 

L2dz
2 + dxµdxµ

ds2 = 
2 

, (1) 
z

then the action takes the form: 

dp+1 S[φ] = − κ 
2 

x 
√
g ((∂φ)2 + m 2φ2 + bφ3 + ...), (2) 

where (∂φ)2 ≡ gAB∂Aφ∂Bφ and xA = (z, xµ). Our goal is to evaluate: 
R 

ln�exp − dD x φ0 O�CFT = extremum[φ | φ→φ0 at z=ǫ]S[φ], (3) 

where S[φ] ≡ S[φ∗(φ0)] ≡ W [φ0], i.e. by using the solution to the equation of motion subject to 
boundary conditions. Now Taylor expand: 

W [φ0] = W [0] + dDx φ0(x)G1(x) + 
1 

dD x1d
D x2 φ0(x1)φ0(x2)G2(x1, x2) + ... (4) 

2 

where 

δW 
G1(x) = �O(x)� = 

δφ0(x)
|φ0=0, (5) 

δ2W 
G2(x) = �O(x1)O(x2)�c = 

δφ0(x1)δφ0(x2)
|φ0=0 . (6) 
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Now if there is no instability, then φ0 is small and so is φ, so you can ignore third order terms in 
φ. From last time: 

dp+2 2 dp+1 S[φ] = 
κ 
2 AdSp+2 

x 
√
g [φ (−∇ + m 2) φ + O(φ3)] − κ 

2 ∂AdS 

x 
√
γ φ (n.∂) φ, (7) 

where the last term is the boundary action, n is a normalized vector perpendicular to the boundary 
and 

∇ 2 = √1 

g
∂A(

√
gg AB∂B). (8) 

Now if the scalar field satisfies the wave equation: 

(−∇2 + m 2)φ ∗ = 0, (9) 

W [φ0] = Sbdy[φ ∗ [φ0]], (10) 

then we can use translational invariance in p + 1 dimensions, xµ xµ + aµ, in order to Fourier →
decompose the scalar field: 

φ(z, xµ) = e ik.xfk(z). (11) 

Now, substituting (11) into (9) and assuming that the metric only depends on z we get: 

0 = (gµνkµkν − √1 

g
∂z(

√
gg zz∂z) +m 2)fk(z) (12) 

L2
− D+1∂z

−D+1∂z= 
1

[z 2k2 z (z ) +m 2L2]fk, (13) 

where we have used gµν = (z/L)2δµν . The solutions of (12) are Bessel functions but we can learn a 
lot without using their full form. For example, look at the solutions near the boundary (i.e. z 0). →

ΔIn this limit we have power law solutions, which are spoiled by the z2k2 term. Try using fk = z
in (12): 

0 = 

= 

k2 z 2+Δ − z D+1∂z(Δz 
−D+Δ) +m 2L2 z Δ 

(k2 z 2 − Δ(Δ −D) +m 2L2)z Δ , 

(14) 

(15) 

and for z → 0 we get: 
Δ(Δ −D) = m 2L2 (16) 

The two roots for (16) are 

Δ± = 
D 
2 

± 

� 

� 

D 
2 

�2 

+ m2L2 . (17) 
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Comments 

−The solution proportional to zΔ is bigger near z 0. •	 →

Δ+ > 0 ∀ m, therefore zΔ+ decays near the boundary. • 

•	 Δ+ + Δ− = D. 

Next, we want to improve the boundary conditions that allow solutions, so take: 

φ(x, z)|z=ǫ = φ0(x, ǫ) = ǫΔ− φ0 
Ren (x),	 (18) 

where φRen 
0 is the renormalized field. Now with this boundary condition, φ(z, x) is finite when 

ǫ 0, since φRen 
0 is finite in this limit. →

Wavefunction renormalization of O (Heuristic but useful) 

Suppose: 

Sbdy dp+1 x 
√
γǫ φ0(x, ǫ)O(x, ǫ) (19) ∋ 

z=ǫ 
� 

� �D 

= dD x
L 

(ǫΔ− φRen (x))O(x, ǫ), (20) 
ǫ 0 

where we have used 
√
γ = (L/ǫ)D . Demanding this to be finite as ǫ 0 we get: →

O(x, ǫ) ∼ ǫD−Δ
− O

Ren(x) (21) 

= ǫΔ+O
Ren(x), (22) 

where in the last line we have used Δ+ + Δ− = D. Therefore, the scaling of ORen is Δ+ ≡ Δ. 

Comments 

We will soon see that �O(x)O(0)� ∼ 
|x|

1 
2Δ .• 

•	 We had a second order ODE, therefore we need two conditions in order to determine a solution 
(for each k). So far we have imposed: 

1.	 For z → ǫ, φ ∼ zΔ
− φ0 + (terms subleading in z). Now we will also impose 

2.	 φ regular in the interior of AdS (i.e. at z → ∞). 

Comments on Δ 

−1. The ǫΔ factor is independent of k and x, which is a consequence of a local QFT (this fails 
in exotic examples). 
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2. Relevantness: Since m2 > 0 = ⇒ Δ ≡ Δ+ > D, so OΔ is an irrelevant operator. This means 
that if you perturb the CFT by adding OΔ to the Lagrangian, then: 

ΔS = dD x (mass)D−Δ
OΔ, (23) 

where the exponent is negative, so the effects of such an operator go away in the IR. For 
example, consider a dilaton mode with l > 0, its mass is given by (for D = 4): 

m 2 = 
(l + 4)l 
L2 

. (24) 

The operator corresponding to this is: 

tr(F 2Xi1 ... il ), (25) 

with Δ = 4 + l > D, therefore it is an irrelevant operator. Now consider a dilaton mode with 
l = 0: then m2 = 0, therefore, Δ = D and hence it corresponds to a marginal operator (an 
example of such operator is the Lagrangian). If m2 < 0, then Δ < D, so it corresponds to a 
relevant operator, but it is ok if m2 is not too negative (”Breitenlohner - Freedmasn (BF) 
allowed tachyons” with −|mBF |2 ≡ −(D/2L)2 < m2). 

3. Instability: This occurs when a renormalizable mode grows with time without a source. But 
in order to have S[φ] < ∞, the solution must fall off at the boundary. This requires a gradient 
energy that ∼ 1 . Note: 

L
� �2D D 

Δ± =
2 

± 
2

+ m2L2 . (26) 

If: 

m 2L2 < ( 
D 

)2 mBF
2 , (27) 

2 
≡ −| | 

then Δ± is complex, therefore we have Δ− = D/2, which is larger than the unitary bound. In 
this case, φ ∼ zΔ

− decays near the boundary (i.e. in the UV). In order to see the instability 
that occurs when m2L2 < (D 

2 )
2 more explicitly, rewrite (9) as a Schrodinger equation, by 

writing φ(z) = A(z)ψ(z), where we choose A(z) in order to remove the first derivative of 
ψ(z). Then, equation (9) becomes: 

(−∂2 + V (z))ψ(z) = Eψ(z), (28) z 

where E = ω2 − k2 , V (z) = σ/z2 and σ = m2L2 − (D2 − 1)/4. An instability occurs when 
E < 0, i.e. ω2 < 0 and hence φ ∼ eiωtφ(z) = e+|ω|tφ(z) grows with time. Now the claim is that 
V = σ/z2 has no negative energy states if σ > −1/4. Note that the notion of normalizability 
here and before are related (Pset 4): 

||ψ||2 = dz ψ†ψ < ∞, (29) 

and S[φ] = dz 
√
g ((∂φ)2 +m 2) (30) 

4. The formula we found before (expression (16)) depends on the spin. For a j−form in AdS we 
have: 

(Δ + j)(Δ + j −D) = m 2L2 . (31) 
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For example, for Aµ massless we have: 

Δ(jµ) = D − 1 → conserved, (32) 

for gµν massless we have: 

Δ(T µν) = D → required from CFT. (33) 
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