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8.821 F2008 Lecture 14: Wave equation in AdS, Green’s function 

Lecturer: McGreevy 

November 11, 2008 

Topics for this lecture 

• Find φ[φ0](x) by Green functions in x-space (efficient) 

• Compute �OO�, counter terms 

• Redo in p-space (general) 

References 

• Witten, hep-th/9802150 

• GKP, hep-th/9802109 

Solving Wave Equation I (Witten’s method) 

Let’s study the wave equation in AdS in some detail. This first method uses a trick by Witten 
which is efficient but slightly obscure. 

If we know “bulk-to-boundary” Green’s function K regular in the bulk, such that 

(−� + m 2)Kp(z, x) = 0 (1) 
Kp(z, x) → �Δ− δ�

D(x − p), z → � (2) 

where p is some point on the boundary, 
then the field in the bulk 

dD x� φRen Δ− φRenφ[φ0](z, x) = 0 (x�)Kx� (z, x) z 0 (x)→ 

solves (1).
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Euclidean AdS 

Recall the metric on AdS with curvature scale L in the upper half plane coordinates: 

ds2 = L2 dz2 + dx2 

2z

Now here comes some fancy tricks, thanks to Ed:


Trick (1): Pick p = “point at ∞”. This implies that the Green’s function K∞(z, x) is x-independent.


The wave equation at k = 0:


0 = −z D+1∂zz
−D+1∂t + m 2 K∞(z) 

can easily be solved. The solution is power law (recall that in the general-k wave equation, it was 
the terms proportional to k2 that ruined the power-law behavior away from the boundary) 

K∞(z) = c+z Δ+ + c−z Δ− 

We can eliminate one of the constants: c = 0, whose justification will come with the result. − 

Trick (2): Use AdS isometries to map p = ∞ to finite x. Let xA = (xµ, z), take xA (x�)A = 
BxA/(x xB). The inversion of this mapping is: 

→ 

zI : 
xµ → 2

x
+

µ 

x2 
z z 

z2+x2→ 

Claim: I 

A) is an isometry of AdS (also Minkowski version, see pset 4)


B) is not connected to 1 in SO(D,2)


C) maps p = ∞ to x = 0, i.e., I : K∞(z, x) → K∞(z�, x�) = K0(z, x) = c+zΔ+ /(z2 + x2)Δ+ .


Some notes: 

(i) That this solves the wave equation (1) as neccessary can be checked directly. 

(ii) The Green’s function is 

Δ+z
Kx� (z, x) = c+ (z2 + (x − x�)2)Δ+ 

≡ K(z, x; x�) 

(iii) The limit of the Green’s function as z 0 , i.e. the boundary is → 

czΔ+ 0, if x = x�
K(z, x; x�) → 

cz−Δ+ 

→ 
if x 
�
= x�→∞, 
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(recall that Δ+ > 0 for any D,m). More specifically, the Green’s function approaches a delta 
function: 

K(z, x; x�) → const · �Δ− δD(x − x�). 

Clearly it has support only near x = x�, but to check this claim we need to show that it has finite 
measure: 

c�Δ+−Δ−

dDx �−Δ− K0(�, x) = dD x 
(�2 + x

c�D�2Δ+−D 

2)Δ+ 

1 
dD x̄=


(1 + x̄2)Δ+�2Δ+ 

D 
π 2 Γ(Δ+ − D )2= c .

Γ(Δ+) 

We will choose the constant c to set this last expression equal to one. Hence, 

φ[φ0](z, x) = dD x� Kx� (z, x)φRen 
0 (x�) 

Δ+ 

dD x�c
x

φRen 
0 (x�) ; =


(z2 + (x − x�)2)Δ+ 

this solves (1) and approaches �Δ− φRen 
0 (x) as z �.→ 

The action is related to expectation values of operators on the boundary: 

S

� 

[φ ]0φ 
R 

φ0O� 
√

γ φ n ∂φ
·


= − ln�e− 

η 
= − 

2
 ∂AdS 

= − 
η

dD x
√

g g zzφ(z, x)∂zφ(z, x)
2
 z=� 

= − 
η 
2 

dD x1d
D x2 φ

Ren(x1)φRen(x2)F�(x1, x2)0 0 

where the “flux factor” is 

.
dD x
K(z, x; x1)z∂zK(z, x; x2)F�(x1, x2) ≡ 

D z=�z


The boundary behavior of K is:


KΔ+ (z, x; x�) 
c


= �Δ− δD(x − x�) + O(�2) + �Δ+ + O(�2)
(x − x�)2Δ−z=� 

D 
2 Γ(Δ+ − D 

2the first terms sets: c−1 )/Γ(Δ+), the second term is subleading in z.= π


K(z, x; x�) 
1

= Δ+�Δ− δ(x − x�) + Δ+cz Δ+ + . . .
z∂z (x − x�)2Δ+z=� 

Ok, now for the 2-point correlation function on the boundary:


G2(x1, x2) ≡ �O(x1)O(x2)�c 
δ δ


= 
δφ0(x1) δφ0(x2) 

−S 
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φ[φ0] = ηF�(x1, x2). 
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We must be careful when evaluating the cases x1 = x2 and x1 = x2, which we do in turn. �

Firstly, if x1 =� x2: 

η � � Δ+czΔ+ 

G2(x1 =� x2) = 
2 

dD xz−D z Δ− δD(x − x1) + O(z 2) (ignore by x1 =� x2) + 
(x1 − x2)2Δ+ 

+ O(z 2) 
z=� 

η 1 
=

2 
cΔ+�−D+Δ−+Δ+ 

(x1 − x2)2Δ+ 
+ O(�2) 

ηcΔ+ = .
2(x1 − x2)2Δ+ 

Good. This is the correct form for a two point function of a conformal primary of dimension Δ+ 

in a CFT; this is a check on the prescription. 

Secondly, if x1 = x2: 

G2(x1, x2) = η Δ−�2Δ−−DδD(x1 − x2) + 
cΔ+ + Δ+c 2�2Δ+−D dD x 

1 
(x1 − x2)2Δ+ (x − x1)2Δ+ (x − x2)2Δ+ 

As � 0, the first term is divergent, the second term is finite, and the third term vanishes. The →
first term is called a “divergent contact term”. It is scheme-dependent and useless. 

Remedy: Holographic Renormalization. Add to Sgeometry the contact term 

−�2Δ−−D (φRenΔS = Sc.t. = 
η 
2 

dD x −Δ 0 (x))2 

bdy 

= −Δ− 
η 
2 ∂AdS,z=� 

√
γ φ2(z, x). 

Note that this doesn’t affect the equations of motion. Nor does it affect G2(x1 =� x2). 

Solving Wave Equation II (k-space) 

Since the previous approach isn’t always available (for example if there is a black hole in the 
spacetime), let’s redo the calculation in k-space. 

Return to wave equation 

0 = z D+1∂z z−D+1∂z − m 2L2 − z 2k2 fk(z) 

with k2 = −ω2 + k2 > 0. The solution is 

D D 
fk(z) = AK z 2 Kν (kz) + AI z 2 Iν (kz), 

with ν = (D/2)2 + m2L2 = Δ+ − D/2. Assume k ∈ R (real time issues later). As z 
Kν ∼ e−kz and Iν ∼ ekz . The latter is not okay, so AI = 0. 

→ ∞: 
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� 
At boundary:


� � nν (b0 + b1n
2 + b2n

4 + . . .), ν /∈ R 
Kν (n) ∼ n−ν a0 + a1n 2 + a2n 4 + . . . + 

nν ln n (b0 + b1n
2 + b2n

4 + . . .), ν ∈ R 

Hence 

D 
fk(z) = AK z

D/2Kν (kz) ∼ z 2 ±ν = z Δ± , as z → 0. 
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