
MIT OpenCourseWare
http://ocw.mit.edu 

8.821 String Theory 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


8.821 F2008 Lecture 20: The Wider World of Gauge/Gravity 
Duality 

Lecturer: McGreevy 

February 13, 2009 

1 Introduction 

Today we’re going to talk more about other examples of gauge gravity duality besides the N = 4 
SYM theory. The first half of the discussion will be very survey like in which we attempt to get 
some feel for the possibilities beyond the N = 4 theory. In the second half we will focus on a 
particularly simple extension of what we know so far that will lead to a breaking of the conformal 
symmetry, confinement, and a mass gap. 

Once we finish up our discussion of confinement we’ll be moving on to black hole mechanics: 
thermodynamics and hydrodynamics. 

2 The Wide World In Brief 

2.1 ”Non-Spherical Horizons” 

In the N = 4 case the gravity dual had the form AdS5 × S5 . A natural generalization would be to 
consider spaces of the form AdS5 × X where X is some compact space. The AdS isometry group 
was responsible for the conformal invariance in the dual field theory while the isometry group of 
S5 related to the R-symmetry in the N = 4 theory. We can consider ”non-spherical horizons” by 
replacing the sphere S5 with a non-spherical manifold X. This should correspond to a change in 
the global symmetries of the dual field theory. Such non-spherical X’s arise as the locus of points 
equidistant from a singularity (such as orbifolds) and the dual field theory can be obtained by 
studying D3-branes probing these singularities. The coupling can even be made to run (changing 
the AdS part of the gravity dual) with the addition of fluxes and fractional branes (but don’t ask 
what this means). 
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2.2 Dp-branes, p = 3 

We’ve focused a lot on D3-branes so far, but there are other branes in string theory and they 
have interesting world volume theories as well. Based on our experience with the D3-brane, we 
might not be too surprised to learn that the world volume theory of a Dp-brane is the dimensional 
reduction of ten dimensional N = 1 SYM on a 10−(p+1) torus with periodic boundary conditions. 
The result is a p + 1 dimensional Yang-Mills theory with 16 supercharges. Now there is a very 
important difference between the 3 + 1 dimensional Yang-Mills theory and Yang-Mills theory in 
any other dimension. To see this difference remember that the Yang-Mills action contains a term 
like dp+1x 1/g2 Tr F 2 (gauge kinetic term). This term allows us to figure out the mass dimension 
of g2 since the dimension of A is always 1 and the dimension of F 2 is therefore 4 regardless of space
time dimension. Requiring the action to be dimensionless means that g2 has mass dimension 3− p 
so that g2 is dimensionful whenever p = 3. 

In terms of a running effective coupling g2 (E) = g2/E3−p we find that gauge theory perturbation eff 

theory is good when g2 1. The behavior of g2 depends strongly on dimension. When p < 3eff ≪ eff 
2 2then geff is big in the IR, and when p > 3 we find the opposite situation where geff is large in the 

UV. 

In the large N limit there exists a type II SUGRA solution with near horizon limit given by 

ds2/α ′ = 
u

g
7

s
−

N 
p 
du2 + 

u

g

7

s

−

N 

p 

dxµdxµ + 
� 

gsNup−3dΩ2
8−p (1) 

where dΩ2
8−p is the metric on a unit S8−p and µ runs from 0 to p for the p + 1 directions on the 

brane world volume. When p = 3 this metric is just that of our old friend AdS5 × S5, but in 
general the ten dimensional manifold doesn’t have such a simple product structure. In addition to 
the metric we must also specify a flux condition 

F8−p = 2πN (2) 
S8−p 

where F8−p is the field strength of some appropriate RR form. Also, the dilaton has a non-trivial 
profile given by 

� � 
3−p 
4gsN 

e Φ = gs 
u7−p 

. (3) 

The fact that the dilaton depends on u is essentially the statement that the Yang-Mills coupling 
runs when p = 3. 

It’s important to note that both the dilaton and the curvature blow up for some values u when 
p = 3. When the dilaton grows large we can no longer trust perturbative string theory and when the 
curvature grows large corrections to supergravity become important. Conservation of evil demands 
that no two different descriptions of the system should be valid simultaneously, and indeed it was 
observed in hep-th/9802042 that the blow up occurs precisely where another description becomes 
valid/useful. 

As an example of this important point let’s consider the case of D2-branes. 
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Figure 1: Regimes of validity of various descriptions of N D2-branes, from [1]. 

2.3 M-theory 

M-theory also provides further examples of gauge gravity duality. Let’s recall the basics of M-
theory very briefly. The theory has a vacuum with eleven non-compact dimensions forming R10,1 

and no coupling. The low energy limit of the theory is eleven dimensional supergravity with 32 
supercharges which is the mother of all supergravity theories. The theory also has a massless 3-form 
potential with field strength G4 = dC3. This field is coupled minimally to branes in the theory 
called M2-branes. The dual of the 4-form field strength is a 7-form field strength G7 = dC6 which 
strongly suggests that the theory also has M5-branes that source G7 electrically and hence G4 

magnetically. 

What does M-theory have to do with string theory? Compactifying the theory on a circle of radius 
R10 gives IIA string theory with string coupling gs (R10MP 

11 )3/2 . This claim can be fleshed ∼
out by identifying the IIA fields in terms of M-theory objects. The Kaluza-Klein gauge boson 
G11 µ becomes the RR 1-form. The D0-branes that source the RR 1-form arise as Kaluza-Klein 
excitations. They have a mass given by m ∼ n/R10 ∼ n/(gs

√
α′ which agrees with the mass 

of KK excitations and the result from IIA which is protected by supersymmetry. M2-branes 
perpendicular to the circle become D2-branes in IIA, and thus the M-theory 3-form C3 becomes 
the IIA RR 3-form when it is perpendicular to the circle. An M2-brane wrapped on the circle 
becomes a fundamental string, and so the M-theory 3-form when pointing along the circle becomes 
the NS-NS 2-form B2 as C3 = B2 ∧ dx10 . 

M-theory is useful here in part because it provides the answer to the question, what happens to the 
D2-branes at strong coupling? The answer according to M-theory is that we should think about 
M2-branes on a large circle instead of D2-branes when the gauge theory effective coupling is large. 
The world volume theory on the M2-branes should flow in the IR to some superconformal field 
theory that fills in the blank in our diagram above. 
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There is one limit in particular in which we know how to make much more sense of this statement. In 
the limit of a large number N of M2-branes we expect a supergravity solution (in eleven dimensions) 
that takes back reaction of the branes into account. Taking the near horizon limit of this solution 
we find the space AdS4 × S7 with G7 = 2πN which describes the IR limit of many M2-branes S7 

in the gravity dual language. Without the large N limit the IR limit of the M2-brane theory is a 
superconformal field theory with N = 8 and an SO(8)R R symmetry. This theory is just the IR 
limit of three dimensional super Yang-Mills (which we remember can be obtained by dimensionally 
reducing N = 4 SYM on a circle). This theory has 7 scalars Xi representing transverse fluctuations 
of the M2-branes leading to a visible SO(7) symmetry. To make the SO(8) symmetry manifest we 
must somehow find another coordinate. The belief is that this coordinate is related to the three 
dimensional dual of a U(1) gauge field da = ⋆ 3dφ with φ essentially the eighth coordinate on the 
circle. 

Recently, there has been progress in formulating a Lagrangian description of the theory of M2
branes. The theory has a discrete parameter related to a Chern-Simons coupling, and indeed the 
theory looks like a Chern-Simons theory with special matter content. 
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Figure 2: Regimes of validity of various descriptions of N D2-branes, after incorporating the fact 
that the strong-coupling limit of type IIA is M-theory. 

A similar story applies for M5-branes, where at low energy the theory becomes some superconformal 
field theory in six dimensions. Very little is known about this theory. For a large number of M5
branes some information about the theory can be obtained from black holes. The free energy goes 
as FM5 ∼ T 6V N3 suggesting that the theory is not best formulated in terms of the matrices of M5 

SYM! It is tempting to mumble words about fields which are N × N × N objects, but not much 
progress has been made with that idea. 
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3 Confinement 

To motivate our picture of confinement let’s remember that the radial coordinate behaves like a 
spectrograph separating the theory into energy scales. In the case of AdS we know that z = 0 is 
like the UV while z → ∞ is like the IR. The fact that AdS goes forever in the z direction seems to 
be related to the fact that the dual theory is a conformal field theory with degrees of freedom at 
all energies. We can make this more precise using the ”warp factor” W (z) which is defined to be 
W in 

dz2 

ds2 = 
2 

+ W 2(z)dxµdxµ. 
z

The warp factor for AdS is simply 1/z, and we can interpret the existence of modes at arbitrarily 
low energy as the statement that the warp factor has a zero at z = ∞. More precisely, there are 
O(N2) degrees of freedom at every energy scale in the CFT. 

What would we expect for a theory exhibiting confinement? We might expect the theory to have 
a mass gap as in pure Yang-Mills theory. On the other hand, there may be Goldstone bosons 
from symmetry breaking caused by the strong dynamics. Such ”pions” would represent low energy 
degrees of freedom, but the important point is that we wouldn’t expect the number of pion modes 
to scale with N (they are color neutral). Thus a confining large-N gauge theory might reasonably 
have a mass gap except for a few low energy modes. The absence of modes at low energy should 
therefore be reflected in the bulk geometry and the warp factor. In particular, we would like to 
interpret a minimum of the warp factor as a signal of a mass gap in the dual field theory. 

The simplest realization of this idea [2] is the N = 4 theory in four dimensions with one direction 
compactified into a circle. Call the coordinate along the circle y and identify y ∼ y + 2πRy. 
We give the fermions anti-periodic boundary conditions around the circle so that Ψ(y + 2πRy) = 
−Ψ(y). To the bosons and gauge fields we give periodic boundary conditions. Such boundary 
conditions are called ”Scherk-Schwarz” or ”thermal” boundary conditions. Indeed, if the direction 
we compactify is Euclidean time then we are considering precisely the N = 4 theory at finite 
temperature. Alternatively, if we compactify some other spatial direction then we get Yang-Mills 
theory in one lower dimension (for energies lower than 1/Ry) 

The boundary conditions treat bosons and fermions differently so supersymmetry is broken. The 
fermionic modes begin at energies of order 1/Ry because they are required to have non-zero angular 
momentum around the circle. The bosons also get a mass from fermions running in loops because 
the protection from supersymmetry is lost at low energy. All that remains therefore are the gauge 
fields at energies small compared to 1/R and we might expect that we have essentially Yang-Mills 
theory in three dimensions at low energy. However, we should be a little careful since there are 
factors of λ floating around and because the energy scale of the bosonic and fermionic modes isn’t 
separated from the scale at which the theory looks four dimensional again. 
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