Massachusetts Institute of Technology Department of Physics 8.962 Spring 2006

PROBLEM SET 2 Post date: Thursday, February 16th Due date: Thursday, February 23rd

- 1. Show that the number density of dust measured by an observer whose 4-velocity is \vec{U} is given by $n = -\vec{N} \cdot \vec{U}$, where \vec{N} is the matter current 4-vector.
- 2. Take the limit of the continuity equation for $|\mathbf{v}| \ll 1$ to get $\partial n/\partial t + \partial (nv^i)/\partial x^i = 0$.
- 3. In an inertial frame \mathcal{O} , calculate the components of the stress-energy tensors of the following systems:

(a) A group of particles all moving with the same 3-velocity $\mathbf{v} = \beta \vec{e_x}$ as seen in \mathcal{O} . Let the rest-mass density of these particles be ρ_0 , as measured in their own rest frame. Assume a sufficiently high density of particles to enable treating them as a continuum.

(b) A ring of N similar particles of rest mass m rotating counter-clockwise in the x - y plane about the origin of \mathcal{O} , at a radius a from this point, with an angular velocity ω . The ring is a torus of circular cross-section $\delta a \ll a$, within which the particles are uniformly distributed with a high enough density for the continuum approximation to apply. Do not include the stress-energy of whatever forces keep them in orbit. Part of this calculation will relate ρ_0 of part (a) to N, a, δa , and ω .

(c) Two such rings of particles, one rotating clockwise and the other counter-clockwise, at the same radius a. The particles do not collide or otherwise interact in any way.

- 4. Use the identity $\partial_{\nu}T^{\mu\nu} = 0$ to prove the following results for a bounded system (i.e., a system for which $T^{\mu\nu} = 0$ beyond some bounded region of space):
 - (a) $\partial_t \int T^{0\alpha} d^3x = 0$. This expresses conservation of energy and momentum.

(b) $\partial_t^2 \int T^{00} x^i x^j d^3 x = 2 \int T^{ij} d^3 x$. This result is a version of the virial theorem; it will come in quite handy when we derive the quadrupole formula for gravitational radiation.

(c) $\partial_t^2 \int T^{00}(x^i x_i)^2 d^3 x = 4 \int T^i_i x^j x_j d^3 x + 8 \int T^{ij} x_i x_j d^3 x$. No pithy wisdom for this one.

5. The vector potential $\vec{A} \doteq (A^0, \mathbf{A})$ generates the electromagnetic field tensor via

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \; .$$

(a) Show that the electric and magnetic fields in a specific Lorentz frame are given by

$$\mathbf{B} = \nabla \times \mathbf{A}$$
$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla A^0$$

Here, ∇ is taken to be the normal gradient operator in Euclidean space.

(b) Show that Maxwell's equations hold if and only if

$$\partial_{\mu}\partial^{\mu}A^{\alpha} - \partial^{\alpha}\partial_{\mu}A^{\mu} = -4\pi J^{\alpha} .$$

(c) Show that a gauge transformation of the form

$$A^{\rm new}_{\mu} = A^{\rm old}_{\mu} + \partial_{\mu}\phi$$

leaves the field tensor unchanged.

(d) Show that one can adjust the gauge so that

$$\partial_{\mu}A^{\mu} = 0 .$$

Show that Maxwell's equations take on a particularly simple form with this gauge choice. Use the operator $\Box \equiv \partial_{\mu}\partial^{\mu}$ to simplify your result.

6. An astronaut has acceleration g in the x direction (in other words, the magnitude of his 4-acceleration, $\sqrt{\vec{a} \cdot \vec{a}}$, is g). This astronaut assigns coordinates $(\bar{t}, \bar{x}, \bar{y}, \bar{z})$ to spacetime as follows:

First, the astronaut defines spatial coordinates to be $(\bar{x}, \bar{y}, \bar{z})$, and sets the time coordinate \bar{t} to be his own proper time.

Second, at $\bar{t} = 0$, the astronaut assigns $(\bar{x}, \bar{y}, \bar{z})$ to coincide with the Euclidean coordinates (x, y, z) of the inertial reference frame that momentarily coincides with his motion. (In other words, though the astronaut is not inertial — he is accelerating there is an inertial frame that, at $\bar{t} = 0$, is momentarily at rest with respect to him. This is the frame used to assign $(\bar{x}, \bar{y}, \bar{z})$ at $\bar{t} = 0$.) Observers who remain at fixed values of the spatial coordinates $(\bar{x}, \bar{y}, \bar{z})$ are called coordinate-stationary observers (CSOs). Note that proper time for these observers is not necessarily \bar{t} ! — we cannot assume that the CSOs' clocks remain synchronized with the clocks of the astronaut. Assume that some function A converts between coordinate time \bar{t} and proper time at the location of a CSO:

$$A = \frac{d\bar{t}}{d\tau}$$

The function A is evaluated at a CSO's location and thus can in principle depend on all four coordinates \bar{t} , \bar{x} , \bar{y} , \bar{z} .

Finally, the astronaut requires that the worldlines of CSOs must be orthogonal to the hypersurfaces $\bar{t} = \text{constant}$, and that for each \bar{t} there exists an inertial frame, momentarily at rest with respect to the astronaut, in which all events with $\bar{t} = \text{constant}$ are simultaneous.

It is easy to see that $\bar{y} = y$ and $\bar{z} = z$; henceforth we drop this coordinates from the problem.

(a) What is the 4-velocity of the astronaut, as a function of \bar{t} , in the initial inertial frame [the frame that uses coordinates (t, x, y, z)]? (Hint: by considering the conditions on $\vec{u} \cdot \vec{u}$, $\vec{u} \cdot \vec{a}$, and $\vec{a} \cdot \vec{a}$, you should be able to find simple forms for u^t and u^x .)

(b) Imagine that each coordinate-stationary observer carries a clock. What is the 4-velocity of each clock in the initial inertial frame?

(c) Explain why $A(\bar{x}, \bar{t})$ cannot depend on time. In other words, why can we put $A(\bar{x}, \bar{t}) = A(\bar{x})$? (Hint: consider the coordinate system that a different CSO may set up.)

(d) Find an explicit solution for the coordinate transformation $x(\bar{t}, \bar{x})$ and $t(\bar{t}, \bar{x})$.

(e) Show that the line element $ds^2 = d\vec{x} \cdot d\vec{x}$ in the new coordinates takes the form

$$ds^{2} = -dt^{2} + dx^{2} = -(1 + g\bar{x})^{2}d\bar{t}^{2} + d\bar{x}^{2}.$$