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1. Show that the number density of dust measured by an observer whose 4-velocity is U�

is given by n = −N� U� , where N� is the matter current 4-vector. · 

2. Take the limit of the continuity equation for |v| � 1 to get ∂n/∂t + ∂(nvi)/∂xi = 0. 

3. In an inertial frame O, calculate the components of the stress-energy tensors of the 
following systems: 

(a) A group of particles all moving with the same 3-velocity v = β�ex as seen in O. 
Let the rest-mass density of these particles be ρ0, as measured in their own rest frame. 
Assume a sufficiently high density of particles to enable treating them as a continuum. 

(b) A ring of N similar particles of rest mass m rotating counter-clockwise in the x−y 
plane about the origin of O, at a radius a from this point, with an angular velocity 
ω. The ring is a torus of circular cross-section δa � a, within which the particles are 
uniformly distributed with a high enough density for the continuum approximation to 
apply. Do not include the stress-energy of whatever forces keep them in orbit. Part of 
this calculation will relate ρ0 of part (a) to N , a, δa, and ω. 

(c) Two such rings of particles, one rotating clockwise and the other counter-clockwise, 
at the same radius a. The particles do not collide or otherwise interact in any way. 

4. Use the identity ∂νT
µν = 0 to prove the following results for a bounded system (i.e., a 

system for which T µν = 0 beyond some bounded region of space): 

(a) ∂t 

�
T 0αd3x = 0. This expresses conservation of energy and momentum. 

(b) ∂t 
2 

�
T 00xixjd3x = 2

�
T ijd3x. This result is a version of the virial theorem; it will 

come in quite handy when we derive the quadrupole formula for gravitational radiation. 

(c) ∂t 
2 

�
T 00(xixi)

2d3x = 4
�

T i
ix

jxjd
3x+8

�
T ijxixjd

3x. No pithy wisdom for this one. 



5. The vector potential A� = 
. 

(A0 ,A) generates the electromagnetic field tensor via 

Fµν = ∂µAν − ∂νAµ . 

(a) Show that the electric and magnetic fields in a specific Lorentz frame are given by 

B = �× A 

∂A 
E = .−

∂t 
−�A0 

Here, � is taken to be the normal gradient operator in Euclidean space. 

(b) Show that Maxwell’s equations hold if and only if 

∂µ∂
µAα − ∂α∂µA

µ = −4πJα . 

(c) Show that a gauge transformation of the form 

Anew = Aold + ∂µφ µ µ 

leaves the field tensor unchanged. 

(d) Show that one can adjust the gauge so that 

∂µA
µ = 0 . 

Show that Maxwell’s equations take on a particularly simple form with this gauge 
choice. Use the operator � ≡ ∂µ∂

µ to simplify your result. 



6. An astronaut has acceleration g in the x direction (in other words, the magnitude of his 
4-acceleration, 

√
�a a, is g). t, x, ¯ ¯� This astronaut assigns coordinates (¯ ¯ y, z) to spacetime · 

as follows: 

First, the astronaut defines spatial coordinates to be (x̄, y,̄ z̄), and sets the time coor
dinate t̄ to be his own proper time. 

Second, at t̄ = x, ¯ ¯ to coincide with the Euclidean co0, the astronaut assigns (¯ y, z) 
ordinates (x, y, z) of the inertial reference frame that momentarily coincides with his 
motion. (In other words, though the astronaut is not inertial — he is accelerating — 
there is an inertial frame that, at t̄ = 0, is momentarily at rest with respect to him. 
This is the frame used to assign (x̄, ¯ ¯ at ¯ =y, z) t 0.) Observers who remain at fixed 
values of the spatial coordinates (x̄, y,̄ z̄) are called coordinate-stationary observers 
(CSOs). Note that proper time for these observers is not necessarily t̄! — we cannot 
assume that the CSOs’ clocks remain synchronized with the clocks of the astronaut. 
Assume that some function A converts between coordinate time t̄ and proper time at 
the location of a CSO: 

dt̄
A = 

dτ 

The function A is evaluated at a CSO’s location and thus can in principle depend on 
all four coordinates t̄, x̄, ȳ, z̄. 

Finally, the astronaut requires that the worldlines of CSOs must be orthogonal to 
the hypersurfaces t̄ = constant, and that for each t̄ there exists an inertial frame, 
momentarily at rest with respect to the astronaut, in which all events with t̄ = constant 
are simultaneous. 

It is easy to see that ȳ = y and z̄ = z; henceforth we drop this coordinates from the 
problem. 

(a) What is the 4-velocity of the astronaut, as a function of t̄, in the initial inertial 
frame [the frame that uses coordinates (t, x, y, z)]? (Hint: by considering the conditions 
on �u �u, �u �a, and �a �a, you should be able to find simple forms for ut and ux.) · · · 
(b) Imagine that each coordinate-stationary observer carries a clock. What is the 
4-velocity of each clock in the initial inertial frame? 

(c) Explain why A(x̄, t̄) cannot depend on time. In other words, why can we put 
A(x̄, t̄) = A(x̄)? (Hint: consider the coordinate system that a different CSO may set 
up.) 

(d) Find an explicit solution for the coordinate transformation x(t, ¯ x̄) and t(t, ¯ x̄). 

(e) Show that the line element ds2 = d�x d�x in the new coordinates takes the form · 

ds2 = −dt2 + dx2 = −(1 + gx̄)2dt̄2 + dx̄2 . 


