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1. Accelerated observer revisited: 

(a) On a spacetime diagram, show the trajectory (t, x) exhibited by the uniformly 
accelerated astronaut from Problem 6 of pset 2. 

(b) Show that there is a region of spacetime which is causally disconnected from this 
astronaut. In other words, show that there is a region of spacetime in which events can
not effect the astronaut without violating the fundamental postulate that information 
cannot propagate faster than the speed of light. 

(c) Find the boundary between the region that is causally connected and causally 
disconnected from the astronaut. Such a boundary is called a particle horizon; it shares 
some features of the event horizon that separates the interior and exterior spacetimes 
of black holes. 

Throughout this problem, only consider t ≥ 0. 

2. Perfect fluids: 

In class, I listed one of the defining characteristics of a perfect fluid that it have no 
viscosity — i.e., no force parallel to the interface between fluid elements. This implied 
that the stress-energy tensor must be diagonal — � j would any component T ij for i = 
violate this assumption. I then claimed (without too much justification) that the 
stress-energy tensor could be written 

Tαβ = 
. 

diag[ρ, P, P, P ] 

in Cartesian coordinates (t, x, y, z).


Suppose that the form were instead


Tαβ = 
. 

diag[ρ, P (1 + �), P, P ) . 

Show that if one performs a rotation around the z axis by an angle φ that Tα�β� 

has 
off-diagonal components of order �P . Hence we must have � = 0 in order for the tensor 
to be diagonal in all Cartesian coordinate systems. 



� � 

� � 

3. “3+1” split of the electromagnetic field: 

An observer with 4-velocity U� interacting with an electromagnetic field F measures 
electric and magnetic fields E�U� and B�U� in their instantaneous local inertial reference 

frame (that is, in an orthonormal basis with �e
0̂ 

= U� ). These fields are 4-vectors with 
components 

1 
�αβγδE

U
α
� = FαβUβ , B

U
α
� = − 

2 
UβFγδ . 

(a) Show that E�U� and B�U� lie orthogonal to observer’s worldline. Thus, they are spatial 
vectors according to the observer, living entirely in that observer’s hypersurface of 
simultaneity. (Hint: recall the projection tensor defined in Pset 1.) 

(b) Show that the field tensor can be reconstructed from the observer’s 4-velocity and 
the electric and magnetic fields they measure via the following tensor equation (valid 
for any basis): 

Fαβ = UαE
U

β
� − E

U
α
� Uβ + �αβ 

γδU
γB

U
δ
� . 

The identity �αβρσ�µνρσ = 2 δα
νδ

β
µ − δα

µδ
β

ν may prove useful. 

(c) The wedge product between two vectors is defined as 

A� ∧ B� = A� ⊗ B� − B� ⊗ A� . 

The Hodge dual of a (0, 2) tensor is defined as 

1 
∗ �αβ Cµν = µνCαβ . 
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Show that the field tensor may be written 

F = a U� ∧ E�U� + b ∗ U� ∧ B�U� . 

What are the values of the real constants a and b? 

4. Transformation of Christoffel symbols: 

(a) Show that, under a coordinate transformation, the components of the Christoffel 
symbol transform as follows: 

Γα� 

β�γ� = 
∂xα� 

∂xβ ∂xγ 

Γα
βγ − 

∂2xα� 

∂xβ ∂xγ 

∂xα ∂xβ� 

∂xγ� 

∂xβ ∂xγ ∂xβ� 

∂xγ� 

Do this by considering the form of the Christoffel symbol in terms of derivatives of the 
metric. 

(b) Show that, using this rule, the components of the covariant derivative of a vector 
transform as tensors should: 

∂xα ∂xβ� 

�α�Aβ� 

= �αAβ . 
∂xα� 

∂xβ 
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5. Carroll: Chapter 3, Problem 2. In this problem, define the curl via 

(curl V� )i = �i
jk�jVk . 

6. Carroll: Chapter 3, Problem 3. 

7. Prove the following connection identities: 

(a) ∂λgµν = Γµνλ + Γνµλ. 

(b) gµκ∂λg 
κν = −g κν∂λgµκ. 

(c) ∂λg
µν = −Γµ

λκg 
κν − Γν

λκg
κµ


The next three parts rely on an identity I will prove on either Thursday March 2nd or

on Tuesday March 7th. The quantity g is the determinant of the metric gµν .


(d) �νAµ
ν = |g|−1/2∂ν |g|1/2Aµ

ν − Γλ
νµAλ

ν in a coordinate basis. 

(e) �νF
µν = |g|−1/2∂ν |g|1/2F µν in a coordinate basis, if F µν is antisymmetric. 

(f) �S ≡ gµν�µ�νS = |g|−1/2∂µ |g|1/2 gµν∂νS in a coordinate basis. (S is a scalar 

function.) 


