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1. Connection in Rindler spacetime 

The spacetime for an accelerated observer that we derived on Pset 2, 

ds2 = −(1 + gx̄)2dt̄2 + dx̄2 + dȳ2 + dz̄2 (1) 

is known as “Rindler spacetime”. Compute all non-zero Christoffel symbols for this 
spacetime. (Carroll problem 3.3 will help you quite a bit here.) 

2. Relativistic Euler equation 

(a) Starting from the stress-energy tensor for a perfect fluid, T = ρU� ⊗U� +Ph, where 

h = g −1 + U� ⊗ U� , using local energy momentum conservation, � · T = 0, derive the 
relativistic Euler equation, 

(ρ + P )�U� U� = −h · �P . (2) 

(Note: Because both T and h are symmetric tensors, there is no ambiguity in the dot

products that appear in this problem.)


(b) For a nonrelativistic fluid (ρ � P , vt � vi) and a cartesian basis, show that this

equation reduces to the Euler equation,


∂vi 1 
+ vk∂kvi = − ∂iP . (3) 

∂t ρ 

(i, k are spatial indices running from 1 to 3.) What extra terms are present if the

connection is non-zero (e.g., spherical coordinates)?


(c) Apply the relativistic Euler equation to Rindler spacetime for hydrostatic equilib

rium. Hydrostatic equilibrium means that the fluid is at rest in the x̄ coordinates, i.e.

U x̄ = 0. Suppose that the equation of state (relation between pressure and density) is

P = wρ where w is a positive constant. Find the general solution ρ(x̄) with ρ(0) = ρ0.


(d) Suppose now instead that w = w0/(1 + gx̄) where w0 is a constant. Show that the

solution is ρ(x̄) = ρ0 exp(−¯ Find L, the density scale height, in terms of g and
x/L. 
w0. Convert to “normal” units by inserting appropriate factors of c — L should be a 
length. 

(e) Compare your solution to the density profile of a nonrelativistic, plane-parallel, 
isothermal atmosphere (for which P = ρkT/µ, where T is temperature and µ is the 
mean molecular weight) in a constant gravitational field. [Use the nonrelativistic Euler 
equation with gravity: add a term −∂iΦ = gi, where Φ is Newtonian gravitational 
potential and gi is Newtonian gravitational acceleration, to the right hand side of Eq. 
(3).] Why does hydrostatic equilibrium in Rindler spacetime — where there is no 
gravity — give such similar results to hydrostatic equilibrium in a gravitational field? 
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3. Spherical hydrostatic equilibrium 

As we shall derive later in the course, the line element for a spherically symmetric 
static spacetime may be written 

� �

−1 

ds2 = −e2Φ(r)dt2 + 1 − 
2GM(r) 

dr2 + r 2(dθ2 + sin2 θ dφ2) , 
r 

where Φ(r) and M(r) are some given functions. In hydrostatic equilibrium, U i = 0 for 
i ∈ [r, θ, φ]. Using the relativistic Euler equation, show that in hydrostatic equilibrium 
p = p(r) with 

∂p ∂Φ 
= −(ρ + P ) . 

∂r ∂r 

4. Converting from non-affine to affine parameterization 

Suppose vα = dxα/dλ∗ obeys the geodesic equation in the form


Dvα
α
= κ(λ∗)v . 

dλ∗


Clearly λ∗ is not an affine parameter.


Show that uα = dxα/dλ obeys the geodesic equation in the form


Duα


= 0 
dλ 

provided that 

dλ 
= exp κ(λ∗) dλ∗ . 

dλ∗ 

5. Conserved quantities with charge 

A particle with electric charge e moves with 4-velocity uα in a spacetime with metric 
gαβ in the presence of a vector potential Aµ. The equation describing this particle’s 
motion can be written 

u β�βuα = eFαβu β , 

where 

Fαβ = �αAβ −�βAα .


The spacetime admits a Killing vector field ξα such that


Lξ�gαβ = 0 ,


Lξ�Aα = 0 .


Show that the quantity (uα + eAα)ξα is constant along the worldline of the particle. 


