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1. Constraint and evolution equations 

(Note: A long setup to a fairly short problem.) 

Maxwell’s equations, written in terms of electric and magnetic fields and using cgs 
units with the speed of light c = 1, take the form 
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The first two equations — those relating the divergence of the fields — are called 
“constraint equations”. This is because they involve no time derivatives — they are 
differential relations among the fields (and sources) at a single moment in time. 

The second two equations are called “evolution equations”. Because they involve the 
time derivative of fields, they relate the fields and sources from one moment to the 
next. We can thus use the second pair of Maxwell equations to evolve “data” (which 
must satisfy the constraints) from some initial moment to an arbitrary late time. 

We will now prove that the Einstein field equations have a similar structure. Because 
the Einstein field equations are second order, we expect our “initial data” to consist 
of fields (the metric) and first time derivatives. Constraint equations should thus be 
those components of the Einstein equation which contain no more than a single time 
derivative; evolution equations are those components which contain two derivatives. 
(This is analogous to the kinematics of a particle: the “initial data” is the starting 
position and velocity; we use the acceleration as our “evolution equation” to find the 
particle’s motion from then on.) 

Suppose we have chosen a timelike direction, so that x0 = t; we do not specify the 
spatial coordinates xi other than to say that they are coordinates covering the x0 = 
constant hypersurface. 

Show that the Einstein tensor components G00 and G0i contain no more than one time 
derivative. Thus, the equations G00 = 8πGT00 and G0i = 8πGT0i can be considered 
constraints which relate the metric, its first time derivative, and sources at a single 
moment of time; the equations Gij = 8πGTij are evolution equations. 

(Hint: A brute force construction of the curvature tensor Gαβ in terms of the metric 
and its derivatives will give you the correct solution to this problem. This is not a rec­
ommended procedure, though. A much quicker solution can be deduced by considering 
the Bianchi identity applied to the Einstein tensor.) 



2. Action for a cosmological constant 

Show that varying the action 

d4S = 
�

x
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(where R is the Ricci scalar and a is a constant) yields the Einstein equation with a 
cosmological constant. How does a relate to the cosmological constant Λ? 

3. Nordstrøm’s gravity theory 

A metric theory devised by G. Nordstrøm in 1913 (before general relativity was final­
ized) relates gµν to Tµν by the equations 

Cαβγδ = 0 , R = κgµνT
µν 

where Cαβγδ = 0 is the Weyl curvature tensor. 

The vanishing of Weyl tells us that the metric is conformally flat; this follows from 
the fact that vanishing Riemann implies that spacetime is truly flat (not just confor­
mally flat), and that the Weyl tensor is invariant under conformal transformations. 
Conformal flatness means that 

gµν = e 2φηµν , 

where φ = φ(xµ) is a function of the spacetime coordinates. (To relate this to the 
notation used in lecture, eφ = Ω; the exponential form is convenient for the calculations 
here.) 

(a) Show that in the limits φ2 � 1 and ∂tφ ∂iφ , the geodesic equation for a test 
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body moving slowly (u � 1) in this spacetime reproduces the kinematics of Newtonian 
gravity. We’ll call this the “Newtonian limit” from now on. 

(b) Show that in the Newtonian limit the Ricci scalar R is just a second order differ­
ential operator acting on φ. Compute that operator. 

(c) Show that Nordstrøm’s field equation reduces in the Newtonian limit to the gravi­
tational field equations, and determine the value of κ. 

(d) Is this theory consistent with the Pound-Rebka gravitational redshift experiment? 
(This is the experiment which established that light in fact redshifts as the equivalence 
principle predicts.) 

(e) Show that there is no deflection of light by the sun in this theory of gravity. 
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4. Weighing a relativistic body 

An object of mass m is at rest on a bathroom scale in a weak, uniform, static gravita­
tional field. That is, the object has fixed spatial coordinates (x, y, z) and the spacetime 
metric has the standard weak-field form gµν = ηµν + 2φdiag(1, 1, 1, 1), with φ the nor­
mal Newtonian potential. We take φ2 � 1, ∂zφ = constant = −g, and ∂µφ = 0 for 
µ = z. Neglect terms of order φ2 and φg in what follows. 

In this problem, we will see that if one wants to interpret gravity as a force rather than 
as the effect of spacetime curvature, then it must be a velocity-dependent force. This 
is not a fundamental insight; the main purpose of the problem is to practice relating 
the metric to measurable quantities in curved spacetime. 

(a) What force does the bathroom scale apply on the body? Compute both the com­
ponents and the scalar magnitude of the 4-force. The principle to apply here is that 
the body does not follow a geodesic: The equation of motion for the body is 

D2 µx
m = mu β α = F µ . 
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This relation may be taken to define the 4-force F µ. 

(b) Now suppose that the object moves with constant, relativistic coordinate 3-velocity 
v = dx/dt = (dx/dτ)(dt/dτ)−1 in the x-direction: 

V x = vV t ; V y = V z = 0 . 

What is V t? (Don’t just use a special relativity formula!) While the mass is on the 
bathroom scale, what force (components and magnitude) does the scale apply to the 
mass? 

(c) Now transform coordinates by applying a naive Lorentz transformation: t̄ = γ(t − 
vx), x̄ = γ(x − vt), ȳ = y, z̄ = z. Evaluate the components of the metric in the new 
coordinate system, gµ̄ν̄ . To first order in φ, what are the force components in this new 
coordinate basis? 

(d) Show that the barred coordinate basis can be transformed to an orthonormal basis, 
�eµ̂ = Eµ̄

µ̂�eµ̄ with a tetrad matrix 

Eµ̄
µ̂ = δµ̄

µ̂ + φA µ̄µ̂ . 

Find the matrix Aµ̄
µ̂. To first order in φ, do the force components F µ̂ differ from F µ̄? 
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5. Converting between geometrized and “normal” units 

Especially as we discuss astrophysical applications, we will find it useful to work in 
“geometrized units”, in which the gravitational constant and the speed of light are 
both set to unity. When this is done, mass, length and time are measured in the same 
units. 

We convert among different units by multiplying by powers of G and c; since such a 
factor is just 1 in geometrized units, we can include as many such factors as is necessary. 
For example, to express the solar mass as a time, we write M� 

geom = GM�/c3 . Using 

M� = 1.99 × 1033 gm , 

G = 6.67 × 10−8 cm 3 gm −1 sec −2 , 

c = 3.00 × 1010 cm/sec , 

we find Mgeom = 4.93 × 10−6 seconds. 

Do the following conversions:


(a) Mass of the earth (M⊕ = 5.98 × 1027 gm) in centimeters.


(b) Characteristic mean density of neutron stars (ρ̄ = 1015 gm/cm3) in inverse square

centimeters. 

(c) Characteristic mean pressure at core of a neutron star ( P̄ = 1034 gm sec−2 cm−1)

in inverse square centimeters.


(d) Acceleration of gravity at the surface of the earth (g = 9.8 m/s2) in inverse seconds

and inverse years. 

(e) The typical (isotropic) luminosity of a gamma ray burst: L = 1053 erg/sec. (Re­
minder: 1 erg = 1 gm cm2/sec2.) 

(f) Planck’s constant (h̄ = 1.05 × 10−27 erg sec) in square centimeters. 

The square root of this quantity is called the “Planck length”, and is denoted lp. 
Since it involves the constants which set quantum effects (h̄), gravitational effects (G), 
and relativistic effects (c), it is thought that quantum gravitational effects (i.e., the 
“quantization of spacetime”, whatever that actually means) must be important at 
lengthscales L ∼ lp. 

(g) Convert lp to a mass (gm); this is known as the “Planck mass”. Convert that to an 
energy; express this energy in electron volts. Comment on the likelihood of observing 
Planck mass scale effects at a particle collider. 


