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1. Isotropic representation of the Schwarzschild metric 

(a) The Schwarzschild line element, written in Schwarzschild coordinates, takes the 
form 

2GM dr2 

ds2 = − 1 − 
r 

dt2 +
(1 − 2GM/r)

+ r 2dΩ2 . 

Show that changing to the radial coordinate r̄, defined by 

� �2GM 
r = r̄ 1 + ,

2r̄


puts the Schwarzschild line element into the form


ds2 = gtt(r̄)dt2 + g(r̄)(dr̄2 + r̄2dΩ2) . 

This new coordinate system is called “isotropic coordinates”, since it emphasizes the 
fundamental local isotropy of the three spatial directions. 

Compute the metric functions gtt(r̄) and g(r̄). 

(b) Take the limit r̄ � GM . Show that the line element then reduces to a form 
appropriate for describing the exterior of a spherical body in the linearized limit of 
general relativity. 

2. Numerical construction of neutron star models in GR 

A moderately accurate approximation to the equation of state of the material which 
makes up a neutron star is given by the polytropic form 

P = Kρ
0

Γ 

where P is the pressure, ρ0 is the rest matter density, and the constants are given by 

Γ = 5/3 , 

32/3π4/3 h2¯
K = 

5 mn 
8/3 

= 5.38 × 109 (dyne/cm 2)(gm/cm 3)−5/3 . 

= 5.38 × 109 gm −2/3 cm 4 sec −2 . 

In this problem, you will numerically integrate the TOV equations of stellar structure 
to build models of neutron stars in general relativity. Your goal will be to examine the 
total mass M∗ and radius R∗ as a function of central density ρ0,c. As such, you must 



familiarize yourself with some system for numerically solving a system of ordinary 
differential equations. My personal experience has shown that the routine NDSolve 
built into the package Mathematica is well suited to this problem. (An example of 
using NDSolve will be posted to the 8.962 website, to illustrate how it works.) More 
ambitious students with sufficient programming and numerical methods expertise may 
prefer to write their own code in C or C++, or whatever you are most comfortable with. 

During your calculations, don’t forget to take into account the difference between rest 
mass density ρ0 and relativistic energy density ρ: 

P KρΓ

0ρ = ρ0 + = ρ0 + . 
Γ − 1 Γ − 1 

The equations you will integrate take the form 

dm 
= 4πρr2 

dr 
dP (ρ + P )(m + 4πr3P ) 

= . 
dr 

− 
r(r − 2m) 

We have here written these equations in units in which both G and c are set equal to 
1. The initial conditions you need to apply are 

m(r = 0) = 0 ,


P (r = 0) = Pc = P (ρ0,c) = KρΓ

0,c .


One integrates these equations until the pressure drops to zero: P (R∗) = 0 defines 
the star’s surface. (In fact, you will probably find in your numerical integration that 
Mathematica or your code attempts to take an infinite number of infinitesimally 
small steps in the vicinity of R∗. The radius at which this numerical inaccuracy sets 
in will still define the surface of the star to very high accuracy.) The total mass of the 
star is then defined as m(R∗) ≡ M∗. 

(a) Experience has shown that numerical calculations of this kind behave best when 
the units are chosen such that many key quantities are within an order of magnitude 
or so of unity. A good choice is to put G = 1 and c = 1; we then pick the units of 
all dimensionful quantities to be powers of kilometers. With this choice, the order of 
magnitude of the total mass will be roughly 1 kilometer, and the order of magnitude 
of the stellar radius will be roughly 10 kilometers. 

Using this unit system, convert 

(i) ρ = 1 gm/cm 3 to km−2 . 

(ii) P = 1 dyne/cm 2 = 1 gm cm−1 sec−2 to km−2 . 

(iii) K = 1 gm−2/3 cm4 sec−2 to km4/3 . Use this conversion factor to convert the K that 
appears in the polytropic equation of state to km4/3 . 

(b) Pick a central density ρ0,c = 1015 gm/cm3 . Inserting appropriate conversion factors 
such that all quantities are in units of km (or powers of km), integrate the TOV 
equations to compute the radius R∗ and mass M∗ of the star that has this central 
density. 



(c) If a photon is emitted radially with energy Eem from the surface of this star, what 
is the energy Eob with which this photon is observed by distant (r → ∞) observers? 
Using these energies, compute the surface redshift 

Eob − Eem 
zsurf = . 

Eob 

(d) As described in lecture, the mass M∗ is not what one would get by integrating all 
fluid density elements over the proper volume of the star’s interior. Let us define Mp as 
the mass that would be obtained by this integration. Re-integrate the TOV equations 
for the central density 1015 gm/cm3, but add the equation 

dmp 

� �

−1/2 

= 4πρr2
√

grr = 4πρr2 1 − 2m(r) 
. 

dr r 

Compute the mass MP , which is mp(R∗). 

(e) The difference between Mp and M∗ reflects the fact that the self-gravity of the star 
contributes to the star’s mass. These differences can be regarded as the “gravitational 
binding energy” of the star. Compute 

Δ ≡ Mp 

M

−
∗ 

M∗ 
. 

Δ is the fraction of the star’s mass that is due to this binding energy. What is this 
fraction for this choice of central density? 



3. Stability of a TOV star 

By computing a range of TOV models, we can assess whether a star is stable against 
radial (i.e., purely spherical) perturbations. Detailed analysis shows that a stable star 
satisfies 

dM 
> 0 ; 

dρc 

an unstable model satisfies 

dM 
< 0 . 

dρc 

(Notice it is ρc that appears in this criterion, not ρ0,c.) A detailed explanation and 
derivation of this stability criterion can be found in Black holes, white dwarfs, and 

neutron stars: The physics of compact objects, by S. L. Shapiro and S. A. Teukolsky, 
§6.8 - 6.9. An intuitive explanation goes as follows: 

Suppose we construct a TOV model, and then squeeze it, decreasing its radius by 
some small amount δR∗. Clearly, the mean density, and thus the central density, will 
be augmented, since we are decreasing the volume of the object. If the star resists 
the squeezing, its mass will also increase: It does work to resist the squeezing, work is 
energy, and mass and energy are equivalent. On the other hand, if the star does not 

resist the squeezing, its mass will decrease: A small squeeze puts it into an energetically 
more favorable smaller radius. This clearly leads to a runaway, causing the star to 
collapse into a black hole. 

(a) Compute a range of TOV models with central densities ρ0,c = 1014 , 1015 , 1016 , 1017 

and 1018 gm/cm3 . Make a plot of M∗ vs ρc for these models. Do you see any evidence 
for a change from stable to unstable behavior? 

(b) Zoom in on any unstable region you find and locate, as accurately as possible, the 
marginally stable star (dM/dρc = 0). This star has the maximum possible mass for 
this equation of state in general relativity. What is this maximum mass? Convert your 
result from km to solar masses. 


