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Massachusetts Institute of Technology 

Department of Physics 

8.962 Spring 2006 

Problem Set 11 

Post date: Thursday, May 11th

Due date: NEVER!!


This pset does not have to be handed in. However, it is suggested that you carefully study

each of these problems. I am planning to have a problem on the final exam that is based


on one of these pset problems!


1. Formation of a black hole 

An objection to the Schwarzschild black hole solution described in class is that it is 
“eternal”. In this problem, we will see how a Schwarzschild black hole can be formed 
from the collapse of a simple, non-singular physical object. 

We will examine the collapse of a “star” composed of pressureless dust. We take the 
star to be spherical, of initial radius R∗, of mass M , and composed of an isotropic 
distribution of pressureless dust. By Birkhoff’s theorem, the exterior of this star is 
simply described by the Schwarzschild metric: 

2GM dr2 

ds2 = − 1 − dt2 + + r 2dΩ2 .r>R∗ r 1 − 2GM/r 

Since the interior is spatially isotropic, it is perfectly described by the Robertson-
Walker metric. Since the star clearly must collapse under its own self gravity, we use 
the closed RW metric to describe the interior: 

ds2 = −dτ 2 + a 2(τ)R2 dχ2 + sin2 χdΩ2 .r<R∗ 0 

(We use different notation for time on the interior and the exterior: The exterior time 
t is Schwarzschild time, a convenient label very far away, but perhaps confusing in the 
strong field; the interior time τ denotes the proper time experienced by an element of 
dust inside the star.) 

(a) The evolution of the scale factor for a closed RW line element turns out to have a 
simple, closed form solution. Show that the parametric solution 

amax 
a = (1 + cos η) ,

2 
amaxR0

τ = (η + sin η) ,
2 

with 0 ≤ η ≤ π, solves the Friedmann equations for k = 1 assuming ρ is given by 
pressureless dust matter. Since a always appears multiplied by the lengthscale R0 in 
the line element, you may set amax = 1. Find a relationship between the initial density 
ρ0 and the lengthscale R0. 

(b) This solution for the interior time coordinate τ is only good up to τ = πR0/2. 
What happens to the interior solution after that? 

We now need to examine the star’s surface from the point of view of the external 
coordinate system. 
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(c) Consider a purely radial “orbit” (i.e., a trajectory with no angular momentum: 
L = 0). For a given energy per unit mass E, find the radius R at which the radial 
velocity goes to zero. 

We will use this solution to define the “orbital energy” of a dust element at the surface 
of the star as it begins to collapse. 

(d) Using the radial geodesic equation for the Schwarzschild geometry and the rela­
tionship between E and R you found in (b), write down an integral for the proper time 
τ it takes for a fluid element at the star’s surface to fall from its initial radius R∗ to r. 
You should find the answer 

� 
r dr� 

τ = − � . 
R∗ 2GM/r� − 2GM/R∗ 

(The minus sign is due to the infalling motion of the surface.) By introducing the 
parameterization 

R∗ 

r = (1 + cos η) , 0 ≤ η ≤ π ,
2 

show that this integral can be evaluated to give 

R3 
∗τ = (η + sin η) . 

8GM 

We now match the inner and the outer coordinate systems: We require that the star’s 
circumference be the same in both the inner and the outer coordinate systems for all 
η, and we require that the two expressions for the proper time τ experienced by a fluid 
element on the star’s surface be the same for all η. 

(e) By enforcing these two conditions, determine the lengthscale R0 and the Robertson-
Walker radius of the star χ. 

For the next part of the problem, assume that the star’s initial radius is R∗ = 5GM . 

A Schwarzschild black hole’s event horizon is a null surface: It is “generated” by null 
geodesics whose coordinate locations are r = 2GM for all time. The event horizon of 
a black hole that forms in collapse is “generated” by the null geodesic that begins at 
the star’s center and reaches the surface just as the surface passes through r = 2GM ; 
at that point, by Birkhoff’s theorem this horizon “generator” will remain at r = 2GM 
for all time. 

(f) Determine the time τ at which the horizon generator leaves the center of the star. 

Hint: It is easiest to solve for this geodesic by noting that the parametric solution for 
the closed RW spacetime allows us to write 

ds2 = a(η)2R
0

2 
−dη2 + dχ2 + sin2 χdΩ2 . 

An outward propagating null geodesic thus obeys dχ/dη = 1. Using the value of χ you 
found for the star’s surface, it should thus be easy to integrate backwards from the 
moment that the star’s surface crosses r = 2GM to determine the value of η at which 
the horizon generator leaves the star’s center. You then just need to convert to τ . 

(g) On a spacetime diagram, sketch the evolution of the star’s surface and of the event 
horizon. 



2. Consider a static, spherical star cluster in which all stars move in circular orbits. Ignore 
collisions between stars (i.e., approximate the stars as non-interacting dust). Adopt 
Schwarzschild-type coordinates with r = 0 at the center of the cluster and write the 
metric in the form 

ds2 = −e 2Φdt2 + e 2Λdr2 + r 2dΩ2 , 

Φ = Φ(r), Λ = Λ(r) . 

(a) Find e2Λ and dΦ/dr in terms of m = 
� 
0 

r 4πρr2dr, where ρ = ρ(r) is the stars’ 
mass density in the cluster. (We assume that there are enough stars that a continuum 
treatment is accurate.) Hint: Your final equations should be similar to the TOV 
equations but with one rather crucial difference. 

(b) Define an appropriate effective potential Veff(r). Use it to determine the energy 
per unit mass Ê and angular momentum per unit mass L̂ of a star in the cluster. 
Your answer should be expressed in terms of r, m(r), and Φ(r). Determine the orbital 
frequency Ω ≡ dφ/dt = (dφ/dτ)/(dt/dτ). 

(c) Use Veff to analyze the stability of orbits of individual stars in the cluster. What 
local condition must Gm(r)/r satisfy if all orbits at r are to be stable? 

(d) Apply the above results to homogeneous cluster of total mass M and radius R. 
[Homogeneous means ρ(r) = const, so m(r) = M(r/R)3 for r ≤ R; you will need to 
use this to solve for Φ(r) to complete this part of the problem.] Find the maximum 
value of GM/R if all orbits are to be stable. 

(e) Find the cluster with maximal GM/R, compute the redshift of photons emitted 
from the cluster’s surface, and from its center. When quasars were first discovered, 
their typical redshift was on the order of z ∼ 0.3. Could a cluster of this type explain 
this redshift? Today, quasars are measured with redshifts as high as z � 6.5. How well 
does the relativisic cluster hypothesis explain these quasars? 
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3. Numerical studies of black hole orbits 

In lecture, we showed that the following equations govern the motion of a test body 
moving around a Schwarzschild black hole: 

� �2
dr 

= Ê2 
− Veff(r) , where 

dτ 

2GM L̂2 

Veff(r) = 1 − 1 + ; 
r r2 

dφ L̂
= ;

dτ r2 

dt Ê 
= . 

dτ 1 − 2GM/r 

In this exercise, you will numerically integrate these equations to study some inter­
esting black hole trajectories. Note, the equation for r involves a slightly troublesome 
singularity at turning points that can make numerical integration tricky: At a turning 
point, dr/dτ changes sign. Naively, you might imagine that this means you have to 
carefully change which root to take as you pass through these turning points. Instead, 
try taking an additional derivative of both sides and rearranging. 

It is useful to define units in which GM = 1; this amounts to redefining r → r/GM , 
ˆ ˆt → t/GM , τ → τ/GM , L → L/GM . 

(a) With this choice, what are the basic units of time and length if M = 10 solar 
masses? 

Now, construct examples of the following types of orbits: 

(b) An unbound orbit — one which comes in from infinity, passes near the black hole, 
and zooms back out to infinity. How close can you get the orbit to come to the black 
hole without being captured? 

(c) An “elliptical” bound orbit. You will rapidly discover that these orbits are not truly 
ellipses (as in Newtonian theory), but are at best precessing ellipses. Try to make an 
orbit whose innermost radius and outermost radius are as widely separated as possible. 

(d) A stable circular orbit. 

(e) An unstable circular orbit. How long can your integrator hold the unstable circular 
orbit at fixed r? It’s entirely possible that your numerical integrator will hold this 
orbit for quite a long time; if that’s the case, consider slightly perturbing the energy or 
angular momentum to see how it evolves. Can you drive the system into both outcomes 
of instability (plunge into the hole and escape to infinity)? 


