# Problem Set 3 Solution 

17.881/882

October 18, 2004

## 1 Morrow

### 4.11 (pp.107-8)

Note that the ideal point of the median voter is $y_{n}$, and that the mid-point between $x_{1}$ and $x_{2}$ is $\left(x_{1}+x_{2}\right) / 2$
a) Partition the set of ideal points and call $n_{l}=\left|\left\{i \mid y_{i}<\left(x_{1}+x_{2}\right) / 2\right\}\right|, n_{r}=$ $\left|\left\{i \mid y_{i}>\left(x_{1}+x_{2}\right) / 2\right\}\right|, n_{c}=\left|\left\{i \mid y_{i}=\left(x_{1}+x_{2}\right) / 2\right\}\right|$

Voters at the midpoint vote for candidate 1 with probability $1 / 2$, and for candidate 2 with probability $1 / 2$.

Let $v_{j}$ be the expected number of votes for party $\mathrm{j} ; v_{1}=n_{l}+{ }_{2}^{\overline{n_{c}}} ; v_{1}=n_{r}+\frac{\overline{n_{c}}}{2}$
Let $u_{j}$ be the utility of party j . Then $u_{1}=v_{1}-v_{2}=n_{l}-n_{r} ; u_{2}=-u_{1}=$ $n_{r}-n_{l}$
b) If $i<n$, candidate 1 should choose $x_{1}$ such that $x_{2}<x_{1}<2 y_{i+1}-x_{2}$

If $i \geq n$ and $x_{2}>y_{i}$, candidate 1 should choose $x_{1}$ such that $2 y_{i}-x_{2}<$ $x_{1}<x_{2}$

If $i>n$ and $x_{2}=y_{i}$, candidate 1 should choose $x_{1}$ such that $2 y_{i-1}-x_{2}<$ $x_{1}<x_{2}$

If $i=n$ and $x_{2}=y_{i}$, candidate 1 should choose $x_{1}=x_{2}$
c) Both candidates choose the ideal point of the median voter, in which case both get utility of 0 . If any candidate chooses a position marginally to the left of the right of the median voter, then that candidate would lose and get negative utility. So we get convergence at the median.

