Problem Set 4 Solution

17.881/882

October 26, 2004

1 Gibbons 2.1 (p.130)

This is a dynamic game of perfect information, we will use backward induction to solve.

We start at the final stage. The parent's objective is

$$
\max _{B} V\left(I_{p}(A)-B\right)+k U\left(I_{c}(A)+B\right)
$$

The first-order condition is:

$$
\begin{equation*}
-V^{\prime}\left(I_{p}(A)-B\right)+k U^{\prime}\left(I_{c}(A)+B\right)=0 \tag{1}
\end{equation*}
$$

(I'll omit discussion of the second-order condition).
This equation is defining an implicit relation $B(A)$.
In the first stage, the child anticipates his choice of A to affect B according to 1 . The child's problem is

$$
\max _{A} U\left(I_{c}(A)+B(A)\right)
$$

The first-order condition is:

$$
\begin{equation*}
U^{\prime}\left(I_{c}(A)+B\right)\left[I_{c}^{\prime}(A)+B^{\prime}(A)\right]=0 \tag{2}
\end{equation*}
$$

(I'll omit discussion of the second-order condition).
Since $U^{\prime}>0$, the only way for 2 to hold is to have

$$
\begin{equation*}
I_{c}^{\prime}(A)=-B^{\prime}(A) \tag{3}
\end{equation*}
$$

To find $B^{\prime}(A)$, let us use the implicit function theorem on 1.

$$
\frac{d B}{d A}=-\frac{-V^{\prime \prime} I_{p}^{\prime \prime}+k U^{\prime \prime} I_{c}^{\prime}}{V^{\prime \prime}+k U^{\prime \prime}}
$$

Using 3 , and solving for I_{c}^{\prime}, we find

$$
V^{\prime \prime}\left[I_{c}^{\prime}(A)+I_{p}^{\prime}(A)\right]=0
$$

Since V is strictly concave, this can only hold if $I_{c}^{\prime}(A)+I_{p}^{\prime}(A)=0$, which is exactly the first-order condition of the joint-income maximization problem:

$$
\max _{A} I_{c}(A)+I_{p}(A)
$$

