Problem Set 7 Solution

17.881/882

November 8, 2004

1 Gibbons 2.3 (p.131)

Let us consider the three-period game first.

1.1 The Three-Period Game

The structure of the game as was described in section 2.1D (pp.68-71). Let us solve the game backwards.

1.1.1 Stage (2b)

Player 1 accepts player 2's proposal $\left(s_{2}, 1-s_{2}\right)$ if and only if the following condition is satisfied:

$$
s_{2} \geq \delta_{1} s
$$

1.1.2 Stage (2a)

Conditional on player 1 accepting the offer, player 2 maximises his/her payoff by offering $s_{2}=\delta_{1} s$. Then, player 2 gets $\delta_{2}\left(1-s_{2}\right)=\delta_{2}\left(1-\delta_{1} s\right)$.

Any rejected offer leads 2 to get a payoff of $\delta_{2}^{2}(1-s)$. Player 2 is better off with a proposal that is accepted if and only if:

$$
\begin{aligned}
& d_{2}=\delta_{2}\left(1-\delta_{1} s\right)-\delta_{2}^{2}(1-s) \\
= & \delta_{2}\left[1-\delta_{2}+s\left(\delta_{2}-\delta_{1}\right)\right] \geq 0
\end{aligned}
$$

If $\delta_{2} \geq \delta_{1}$, we have $d_{2} \geq \delta_{2}\left[1-\delta_{2}\right]>0$ since $0<\delta_{2}<1$.
If $\delta_{2}<\delta_{1}$, we have $d_{2} \geq \delta_{2}\left[1-\delta_{1}\right]>0$ since $0<\delta_{1}, \delta_{2}<1$.
Either way, we have that player 2 prefers to have his/her proposal accepted, and offers $s_{2}=\delta_{1} s$

1.1.3 Stage (1b)

Player 2 accepts player 1's proposal $\left(s_{1}, 1-s_{1}\right)$ if and only if:

$$
\begin{aligned}
& 1-s_{1} \geq \delta_{2}\left(1-s_{2}\right) \\
s_{1} \leq & 1-\delta_{2}\left[1-\delta_{1} s\right]
\end{aligned}
$$

1.1.4 Stage (1a)

Conditional on player 2 accepting the offer, player 1 maximises his/her payoff by offering $s_{1}=1-\delta_{2}\left[1-\delta_{1} s\right]$.

Any rejected offer leads 1 to get a payoff of $\delta_{1} s_{2}=\delta_{1}^{2} s$. Player 1 is better off with a proposal that is accepted if and only if:

$$
\begin{aligned}
& d_{1}=1-\delta_{2}\left[1-\delta_{1} s\right]-\delta_{1}^{2} s \\
= & 1-\delta_{2}+s \delta_{1}\left(\delta_{2}-\delta_{1}\right) \geq 0
\end{aligned}
$$

If $\delta_{2} \geq \delta_{1}$, we have $d_{1} \geq 1-\delta_{2}>0$ since $0<\delta_{2}<1$.
If $\delta_{2}<\delta_{1}$, we have $d \geq\left(1-\delta_{2}+\delta_{1}\right)\left(1-\delta_{1}\right)>0$ since $0<\delta_{1}, \delta_{2}<1$.
Either way, we have that player 1 prefers to have his/her proposal accepted, and offers $s_{1}=1-\delta_{2}\left[1-\delta_{1} s\right]$

The outcome of the game is that players 1 and 2 agree on the distribution $\left(s_{1}^{*}, 1-s_{1}^{*}\right)=\left(1-\delta_{2}\left[1-\delta_{1} s\right], \delta_{2}\left[1-\delta_{1} s\right]\right)$.

1.2 The Infinite-Horizon Game

Let s be a payoff that player 1 can get in a backwards-induction of the game as a whole, and s_{H} the maximum value of s.Imagine using s as the thirdpayoff to Player 1. Player 1's first-period payoff is a function of s, namely $f(s)=1-\delta_{2}\left[1-\delta_{1} s\right]$. Since this function is increasing in $s, f\left(s_{H}\right)$ is the highest possible first-period payoff, so $f\left(s_{H}\right)=s_{H}$. Then

$$
\begin{aligned}
1-\delta_{2}\left[1-\delta_{1} s_{H}\right] & =s_{H} \\
& \Longleftrightarrow s_{H}=\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}
\end{aligned}
$$

A parallel argument shows that $f\left(s_{L}\right)=s_{L}$, where $f\left(s_{L}\right)$ is the lowest payoff that player 1 can achieve in any backwards-induction of the game as a whole. Therefore, the only value of s that satisfies $f(s)=s$ is $\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}$. Thus $s_{H}=s_{L}=$ s^{*}, so there is a unique backwards-induction outcome of the game as a whole: A distribution

$$
\left(s^{*}, 1-s^{*}\right)=\left\{\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}, \frac{\delta_{2}\left(1-\delta_{1}\right)}{1-\delta_{1} \delta_{2}}\right\}
$$

