Problem Set 7 Solution

17.881/882

November 8, 2004

Gibbons 2.3 (p.131) 1

Let us consider the three-period game first.

The Three-Period Game 1.1

The structure of the game as was described in section 2.1D (pp.68-71). Let us solve the game backwards.

1.1.1 Stage (2b)

Player 1 accepts player 2's proposal $(s_2, 1 - s_2)$ if and only if the following condition is satisfied:

 $s_2 \ge \delta_1 s$

1.1.2Stage (2a)

Conditional on player 1 accepting the offer, player 2 maximises his/her payoff by offering $s_2 = \delta_1 s$. Then, player 2 gets $\delta_2(1 - s_2) = \delta_2(1 - \delta_1 s)$. Any rejected offer leads 2 to get a payoff of $\delta_2^2(1 - s)$. Player 2 is better off

with a proposal that is accepted if and only if:

$$d_2 = \delta_2(1 - \delta_1 s) - \delta_2^2(1 - s)$$

= $\delta_2[1 - \delta_2 + s(\delta_2 - \delta_1)] \ge 0$

If $\delta_2 \geq \delta_1$, we have $d_2 \geq \delta_2[1 - \delta_2] > 0$ since $0 < \delta_2 < 1$. If $\delta_2 < \delta_1$, we have $d_2 \geq \delta_2[1 - \delta_1] > 0$ since $0 < \delta_1, \delta_2 < 1$.

Either way, we have that player 2 prefers to have his/her proposal accepted, and offers $s_2 = \delta_1 s$

1.1.3 Stage (1b)

Player 2 accepts player 1's proposal $(s_1, 1 - s_1)$ if and only if:

$$1 - s_1 \ge \delta_2(1 - s_2)$$

$$s_1 \le 1 - \delta_2[1 - \delta_1 s]$$

1.1.4 Stage (1a)

Conditional on player 2 accepting the offer, player 1 maximises his/her payoff by offering $s_1 = 1 - \delta_2 [1 - \delta_1 s]$.

Any rejected offer leads 1 to get a payoff of $\delta_1 s_2 = \delta_1^2 s$. Player 1 is better off with a proposal that is accepted if and only if:

$$d_1 = 1 - \delta_2 [1 - \delta_1 s] - \delta_1^2 s$$

= $1 - \delta_2 + s \delta_1 (\delta_2 - \delta_1) \ge 0$

If $\delta_2 \ge \delta_1$, we have $d_1 \ge 1 - \delta_2 > 0$ since $0 < \delta_2 < 1$.

If $\delta_2 < \delta_1$, we have $d \ge (1 - \delta_2 + \delta_1)(1 - \delta_1) > 0$ since $0 < \delta_1, \delta_2 < 1$.

Either way, we have that player 1 prefers to have his/her proposal accepted, and offers $s_1 = 1 - \delta_2 [1 - \delta_1 s]$

The outcome of the game is that players 1 and 2 agree on the distribution $(s_1^*, 1 - s_1^*) = (1 - \delta_2 [1 - \delta_1 s], \delta_2 [1 - \delta_1 s]).$

1.2 The Infinite-Horizon Game

Let s be a payoff that player 1 can get in a backwards-induction of the game as a whole, and s_H the maximum value of s.Imagine using s as the thirdpayoff to Player 1. Player 1's first-period payoff is a function of s, namely $f(s) = 1 - \delta_2[1 - \delta_1 s]$. Since this function is increasing in s, $f(s_H)$ is the highest possible first-period payoff, so $f(s_H) = s_H$. Then

$$1 - \delta_2 [1 - \delta_1 s_H] = s_H$$
$$\iff s_H = \frac{1 - \delta_2}{1 - \delta_1 \delta_2}$$

A parallel argument shows that $f(s_L) = s_L$, where $f(s_L)$ is the lowest payoff that player 1 can achieve in any backwards-induction of the game as a whole. Therefore, the only value of s that satisfies f(s) = s is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. Thus $s_H = s_L = s^*$, so there is a unique backwards-induction outcome of the game as a whole: A distribution

$$(s^*, 1 - s^*) = \left\{ \frac{1 - \delta_2}{1 - \delta_1 \delta_2}, \frac{\delta_2 (1 - \delta_1)}{1 - \delta_1 \delta_2} \right\}$$