MIT OpenCourseWare <u>http://ocw.mit.edu</u>

15.023J / 12.848J / ESD.128J Global Climate Change: Economics, Science, and Policy Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Methods of Uncertainty Analysis

15.023 Lecture9 April 2008Travis FranckEunjee Lee

(material from previous lectures by Mort Webster, Ian Sue Wing, Marcus Sarofim, and Travis Franck)

"Persons pretending to forecast the future shall be considered disorderly under subdivision 3, section 901 of the criminal code and liable to a fine of \$250 and/or six months in prison."

Section 889, New York State Code of Criminal Procedure

Lecture Highlights

- How to use Decision Trees
- Understanding mean vs. median, standard deviations, etc.
- How to read PDFs (and make one from a histogram)
- The role of uncertainty in climate change science

Elements of a Decision Tree

Uncertainty Node: Shows different possible outcomes for an uncertain event, and the respective probabilities for each outcome

Decision Node: possible actions at a choice point

Example: Biking in the Rain

Figure by MIT OpenCourseWare.

No connection between periods

Emissions Scenarios

Climate Scenarios

Handling scientific uncertainty in AR4

• In general, uncertainty ranges for results given in this Summary for Policymakers are 90% uncertainty intervals unless stated otherwise, that is, there is an estimated 5% likelihood that the value could be above the range given in square brackets and 5% likelihood that the value could be below that range. Best estimates are given where available. Assessed uncertainty intervals are not always symmetric about the corresponding best estimate. Note that a number of uncertainty ranges in the Working Group I TAR corresponded to 2 standard deviations (95%), often using expert judgment.

(IPCC, 2007: Summary for Policymakers. In: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*)

Why Worry about Uncertainty?

- To identify important factors and assumptions underlying disagreements
- To know where more information is needed
- To attach a range to model forecasts
- To understand attitudes toward risk
- To account for learning over time (Attaching uncertainty to predictions might be as natural as attaching cost/benefit to climate targets)

Types of Uncertainty

- Parametric Uncertainty
 - Uncertainty in the value of a quantity
- Model or Structural Uncertainty
 - Uncertainty in the form of a model
 - e.g. Linear vs. Quadratic relationship
- Surprise/Indeterminacy
 - Don't know what we don't know

Describing an Uncertainty Quantity

- Mean $\mu_x = \int_{-\infty}^{\infty} x f_x(x) dx = E[x]$
- Variance $\sigma_x^2 = \int_{-\infty}^{\infty} (x \mu_x)^2 f_x(x) dx = Var[x]$
- Standard Deviation $\sigma_x = \sqrt{Var(x)}$
- Covariance $cov(X_1, X_2) = E[X_1 * X_2]$ (if E[x]=0)

Describing an Uncertain Quantity II

- Mode: Most likely value (peak)
- Median: Value of x such that
 - Prob (x<x₀) = Prob (x>x₀) = 0.50
- Fractile: The *p* fractile is the value x₀ such that
 Prob (x<x₀) = p
- Probability Density Function (pdf)
 - The integral under a portion of the function is the probability that the event will fall into that range.
- Cumulative Density Function (cdf)

Probability Density Functions

Cumulative Density Function

Input distributions

Methods of Input Distribution Acquisition:

Expert Elicitation, Historical Analysis, Modeling Ranges

Correlation between Distributions

Measuring Uncertainty - Global

- Range Sensitivity
 - Varying each x from low to high (tornado plots)
- Joint Parametric Analysis
 - Vary lows and highs for multiple variables
- Monte Carlo Simulation

- Use pdfs of inputs to produce pdfs of outputs

Monte Carlo Simulation

- Crude Monte Carlo
- Stratified Sampling Methods

 Latin Hypercube Sampling
- Importance Sampling Methods
- Response Surface Methods
 - Probabilistic Collocation Method

Monte Carlo Simulation

- Example 1: Throwing Dice
- Example 2:
 - Y = X1 + X2
 - -X1 = N(50,20)
 - -X2 = N(40,25)
 - Analytic Analysis: Y = N(90,32)
 - Compare to Monte Carlo samples of size n=10,100,1000,10000

Monte Carlo, n=10,100

Figure by MIT OpenCourseWare.

Monte Carlo, n=1000,10000

Source: Webster et al (2001). Uncertainty Analysis of Global Climate Change Projections, MIT Joint Program Report No. 73.

The Greenhouse Gamble

Business As Usual

Policy

Questions?