MIT OpenCourseWare <u>http://ocw.mit.edu</u>

15.023J / 12.848J / ESD.128J Global Climate Change: Economics, Science, and Policy Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# The Basics of Economics (in an hour)

#### 15.023/12.848/ESD.128 Lecture Feb 20, 2008

**Travis Franck** 



## Purpose of Today

- The Flavor of Economics
  - How do economists think about problems?
  - What is the basic toolset?
  - Standard terminology
  - And a taste of the complexity involved...

# Agenda

- Part 1: Overview of economic modeling
- Part 2: Basic Production functions
- Part 3: Supply and Demand
- Part 4: Bigger Picture Concepts

## Models: Similarities



Equilibrium solution Transient solutions Estimation, calibration

Equilibrium solution Dynamics (investment) Estimation, calibration



## **Basic Assumptions of Markets**

- Market efficiency depends on:
  - Perfect information
  - Perfect or complete competition
    - No single entity can influence prices
  - Clear and complete property rights
  - No transaction costs
  - Rational behavior

Next Week

### Market-Based vs. Technological Cost

VS.

**Top-Down** 

- General equilibrium
  - Full economy
    - Goods, capital, labor
  - Prices endogenous
  - Factors driving growth
  - International trade
- Sacrifice technological detail
  - Production technology
  - Aggregation of sectors

**Bottom-up** 

- Engineering cost
  - Technical detail
  - Zero-cost opportunities
- Partial equilibrium
  - Key prices exogenous
  - Omit interactions
- Direct costs, ignoring
  - Consumer surplus loss
  - Industrial structure
  - Transactions costs

**Hybrids** 

# Challenges of Economic Modeling

- Invention of new technologies
- Foresight
  - Learning under uncertainty
- Consumer preferences
  - Attitudes to risk
- Values and political decisions
  - Prescriptive/descriptive dichotomy

# Agenda

- Part 1: Overview of economic modeling
- Part 2: Basic Production functions
- Part 3: Supply and Demand
- Part 4: Bigger Picture Concepts







### **Extending the Production Function**

- More than just capital and labor
  - Energy, materials
  - Products of one production function can be inputs to another production function
- Extend to entire sectors
  - Eg, US agriculture

# Agenda

- Part 1: Overview of economic modeling
- Part 2: Basic Production functions
- Part 3: Supply and Demand
- Part 4: Bigger Picture Concepts

### Supply and Demand

An ideal market maximizes societal surplus.

![](_page_15_Figure_2.jpeg)

![](_page_16_Figure_0.jpeg)

# Price Elasticity of Demand $E_{p} = \frac{(\Delta Q / Q)}{(\Delta P / P)}$

![](_page_17_Figure_1.jpeg)

### **Aggregating Demand Functions**

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_0.jpeg)

### Taxes, Quotas, and Surplus Effects

![](_page_20_Figure_1.jpeg)

# Agenda

- Part 1: Overview of economic modeling
- Part 2: Basic Production functions
- Part 3: Supply and Demand
- Part 4: Bigger Picture Concepts

# General Equilibrium

- Supply/demand relationships do not exist in a vacuum.
  - If the US were to put a \$2 tax on gasoline what would happen?
    - 1<sup>st</sup>: Solve supply/demand equation for gasoline. Reduction in gasoline usage, reduction in gasoline price
    - In the US, goods that use gasoline as an intermediate will increase in price
    - Outside the US, lower gasoline prices will lead to increased consumption ("leakage")
    - Eventually, consumers will move in order to drive less
  - Propagate changes until a new equilibrium is reached

## Discount Rate

- Composed of:
  - Rate of Time preference
  - Marginal productivity of capital \* marginal utility of money
- Discount Rate is not Inflation: we use "constant" dollars
- Usual expression:

$$B_t = (1+r)^{-t}$$

- Net Present Value = sum of all time periods, appropriately discounted.
- Value judgment? Revealed preference? Long time horizon?

# Cost/Benefit Analysis

- Cost of a decision
  - Money spent, opportunity cost
- Benefit
  - Calculate quantity abated
  - Discount rate
- The total benefit minus total cost is maximized at the point where the marginal cost = marginal benefit
- Valuation
  - Revealed preferences, value of a human life, existence value, etc
  - But every decision has an implicit valuation

# **Opportunity Cost**

- Most valuable alternative use of resource
  - Time, money, capital
  - Owning vs. renting
  - Opportunity cost of watching a free movie

### Marginal Abatement Cost

- "MAC curve" Price
  Include all options for reduction, ordered by price,
  - with quantity available at that price

![](_page_26_Figure_3.jpeg)

### Questions?

• (next week: Environmental Economics)