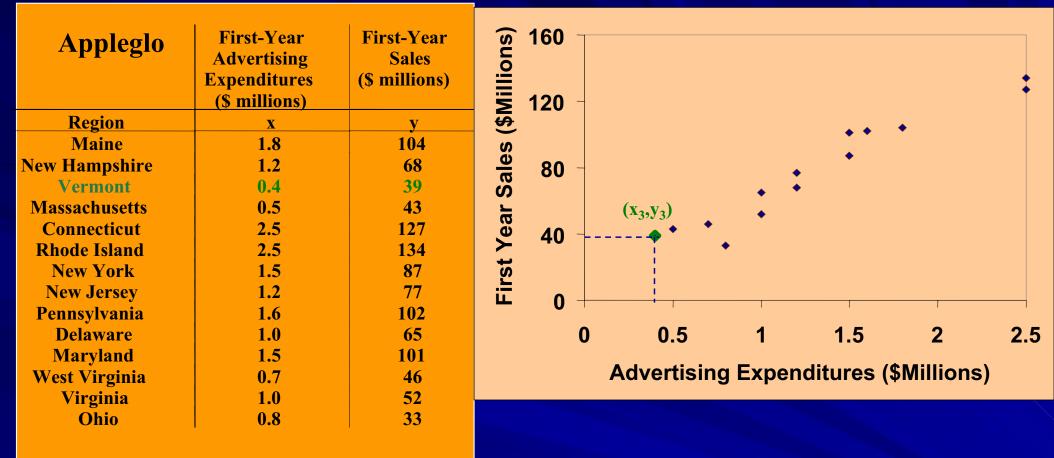
Regression Models

Summer 2003

Does Advertising Increase Sales?



Questions: i) How to relate advertising expenditure to sales?
ii) What is expected first-year sales if advertising expenditure is \$2.2 million?
iii) How confident are you in your estimate?

Regression Analysis

GOAL: Develop a formula that relates two quantities

- x: "independent" (also called "explanatory") variable quantity typically under managerial control
- Y: "dependent" variable magnitude is determined (to some degree) by value of x quantity to be predicted

Examples:	Y	X
	<u>(dependent variable)</u>	<u>(independent variable)</u>
	College GPA	SAT score
	Lung cancer rate	Amount of cigarette smoking
	Stock return	Spending in R&D
	First-year sales	Advertising expenditures

Outline

- Simple Linear Regression
- Multiple Regression
- Understanding Regression Output
- Coefficient of Determination R²
- Validating the Regression Model

The Basic Model: Simple Linear Regression

Data: (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) (a sample of size n taken from the population of all (X,Y) values)

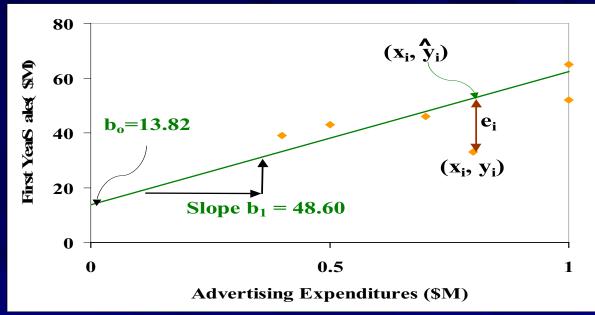
Model of the population*:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon$$

Comments:

- The model assumes a *linear* relationship between x and Y, with y intercept β_0 and slope β_1
- β_0 and β_1 are the *parameters for the whole population*. We do not know them and will *estimate* them using b_0 and b_1 to be calculated from the data (i.e. from the sample of size n)
- ε_i is the called the *error term*. Since the Y's do not fall precisely on the line (i.e. they are r.v.'s) we need to add an error term to obtain an equality.
- ϵ_i is N(0, σ). Thus, $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are i.i.d. Normally distributed r.v.'s.
- E $(Y_i | x_i) = \beta_0 + \beta_1 x_i$ Is the *expected value of Y for a given x value*. It is just the value on the line as that is where on average the Y_i value would fall for a given x_i value.
- $SD(Y_i | x_i) = \sigma$ Notice that The SD of Y_i is equal to the SD of ε_i and is a constant independent of the value of x.

How do we choose the line that "best" fits the data?



Best choices: $b_0 = 13.82$ $b_1 = 48.60$

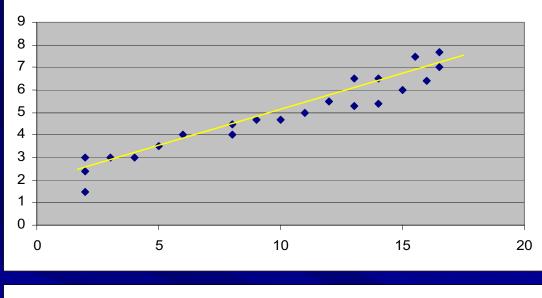
Regression coefficients: b_0 and b_1 are estimates of β_0 and β_1 Regression estimate for Y at x_i : $\hat{y}_i = b_0 + b_1 x_i$ (prediction) Value of Y at x_i : $y_i = b_0 + b_1 x_i + e_i$ (use the error to obtain equality) Residual (error): $e_i = y_i - \hat{y}_i$ The "best" regression line is the one that chooses b_0 and b_1 to minimize the total squared errors: $SSR = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

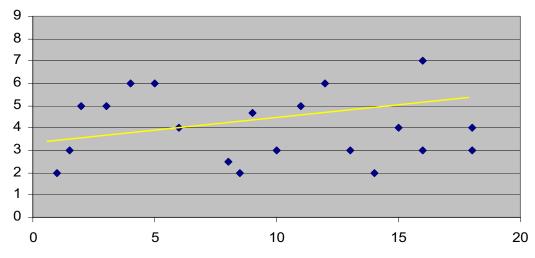
SSR is the residual sum of squares, analogous to a variance calculation

15.063 Summer 2003

How Good a Fit to the Line?

std error s
 estimates σ, the
 std deviation of
 error ε_i
 lower figure
 has 10 times
 the error





Coefficient of Determination: R²

- It is a measure of the overall quality of the regression.
 Specifically, it is the percentage of total variation exhibited in the y_i data that is accounted for or predicted by the sample regression line.
- The sample mean of Y: $\overline{y} = (y_1 + y_2 + \ldots + y_n)/n$
- Total variation in Y = $\sum_{i=1}^{n} (y_i \overline{y})^2$
- Residual (unaccounted) variation in Y = $\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ (even the linear model, \hat{y}_i , does not explain all the the variability in y_i)

variation accounted for by x variables

total variation

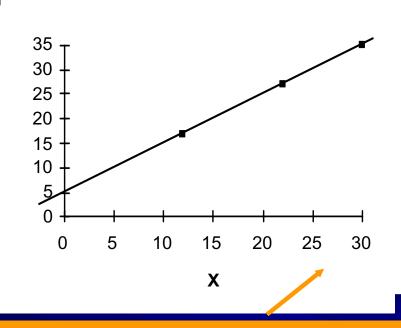
= 1 - variation not accounted for by x variables

total variation

$$= 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y}_i)^2}$$

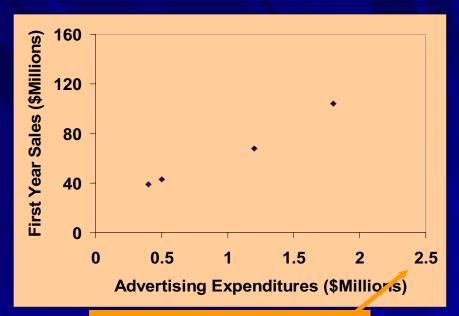
 $R^{2} =$

*R*² *takes values between 0 and 1 (it is a percentage).*

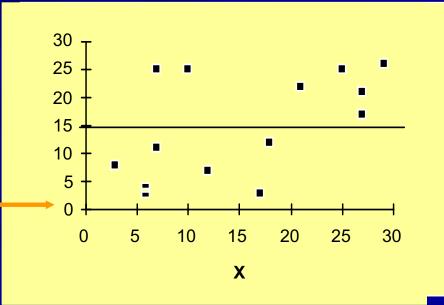


 R^2 = 1; x values account for all variation in the Y values

> R^2 = 0; x values account for no variation in the Y values



R² = 0.833 in our Appleglo Example



Correlation and Regression

- Simple regression is correlation in disguise
- Coefficient of Determination = squared correlation coefficient
- **Regression coefficient:** $b_1 = correlation * s_v/s_x$
- Appleglo: Sales = 13.82 + 48.60 * Advertising
- The coefficients are in units of sales and advertising. If advertising is \$2.2 Million, then sales will be 13.82 + 48.60 * 2.2 = \$120.74 M

What if there are >1 predictor variable?

Sales of Nature-Bar (\$ million)

	Y	<u>X</u> 1	<u>X</u> 2	<u>X</u> 3
region	sales	advertising	promotions	competitor's
				sales
Selkirk	101.8	1.3	0.2	20.40
Susquehanna	44.4	0.7	0.2	30.50
Kittery	108.3	1.4	0.3	24.60
Acton	85.1	0.5	0.4	19.60
Finger Lakes	77.1	0.5	0.6	25.50
Berkshire	158.7	1.9	0.4	21.70
Central	180.4	1.2	1.0	6.80
Providence	64.2	0.4	0.4	12.60
Nashua	74.6	0.6	0.5	31.30
Dunster	143.4	1.3	0.6	18.60
Endicott	120.6	1.6	0.8	19.90
Five-Towns	69.7	1.0	0.3	25.60
Waldeboro	67.8	0.8	0.2	27.40
Jackson	106.7	0.6	0.5	24.30
Stowe	119.6	1.1	0.3	13.70

Multiple Regression

- In general, there are many factors in addition to advertising expenditures that affect sales
- Multiple regression allows more than one independent variable

Independent variables: X_1, X_2, \ldots, X_k (k of them) Data: $(y_1, x_{11}, x_{21}, \ldots, x_{k1}), \ldots, (y_{n1}, x_{n1}, x_{n2}, \ldots, x_{kn})$ Population Model: $Y_i = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki} + \varepsilon_i$ $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are i.i.d random variables, ~ N(0, σ) *Regression coefficients:* b_0 , b_1 ,..., b_k are estimates of β_0 , β_1 ,..., β_k . Regression Estimate of y_i : $\hat{y}_i = b_0 + b_1 x_{1i} + \dots + b_k x_{ki}$ *Goal:* Choose b_0, b_1, \dots, b_k to minimize the residual sum of squares. i.e., minimize: $SSR = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

Regression Output (from Excel)

Regressio	on S	tatistics					d a sel	
Multiple R		0.913			Standard			
R Square		0.	833	/	error	s: an		
Adjusted R Square		0.'	787		estin	nate of o	σ	
Standard Error		17.	600					
Observations			15			s² esti	mate	
Analysis of Variance	E						of varia	ance
	df	Sum of	Mean	F	"	Signif	ficance]
		Squares	Square				F	
Regression	3	16997.537	5665.85	18.2	290		0.000	
Residual	11	3407.473	309.77					
Total	14	20405.009						
	a						F T 7	

Coefficients	Standard	t	P -	Lower	Upper
	Error	Statistic	value	95 %	95 %
65.71	27.73	2.37	0.033	4.67	126.74
48.98	10.66	4.60	0.000	25.52	72.44
59.65	23.63	2.53	0.024	7.66	111.65
-1.84	0.81	-2.26	0.040	-3.63	-0.047
	65.71 48.98 59.65	Error 65.71 27.73 48.98 10.66 59.65 23.63	ErrorStatistic65.7127.732.3748.9810.664.6059.6523.632.53	ErrorStatisticvalue65.7127.732.370.03348.9810.664.600.00059.6523.632.530.024	ErrorStatisticvalue95%65.7127.732.370.0334.6748.9810.664.600.00025.5259.6523.632.530.0247.66

Understanding Regression Output

1) Regression coefficients: b_0, b_1, \ldots, b_k are estimates

of $\beta_0, \beta_1, \ldots, \beta_k$ based on sample data. Fact: $E[b_j] = \beta_j$. (i.e., if we run the multiple regression many many times, the average value of the b_j 's we get is β_j)

Example:

- $b_0 = 65.705$ (its interpretation is context dependent, in this case, sales if no advertising, no promotions, and no competition)
- b₁ = 48.979 (an additional \$1 million in advertising is expected to result in an additional \$49 million in sales)
- b₂ = 59.654 (an additional \$1 million in promotions is expected to result in an additional \$60 million in sales)

 $b_3 = -1.838$ (an increase of \$1 million in competitor sales is expected to decrease sales by \$1.8 million)

Understanding Regression Output, Continued

2) Standard error s: an estimate of σ , the SD of each ε_i . It is a measure of the amount of "noise" in the model. Example: s = 17.60

- 3) Degrees of freedom: to be explained later.
- 4) Standard errors of the coefficients: s_{b0} , s_{b1} , ..., s_{bk} They are just the standard deviations of the estimates b_0 , b_1 , ..., b_k .

They are useful in assessing the quality of the coefficient estimates and validating the model. (Explained later).

Coefficient of Determination: R²

- A high R² means that most of the variation we observe in the y_i data can be attributed to their corresponding x values — a desired property.
- In multiple regression, R is called "Multiple R"
- In simple regression, the R² is higher if the data points are better aligned along a line. The corresponding picture in multiple regression is a plot of predicted y_i vs. the actual y_i data.
- How high a R² is "good" enough depends on the situation (for example, the intended use of the regression, and complexity of the problem).
- Users of regression tend to be fixated on R², but it's not the whole story. It is important that the regression model is "valid."

Caution about R²

- One should not include x variables unrelated to Y in the model, just to make the R² fictitiously high. New x variables will account for some additional variance by chance alone ("fishing"), but these would not be validated in new samples.
- Adjusted R² modifies R² to account for the number of variables and the sample size, therefore counteracting "fishing":

Adjusted
$$R^2 = 1 - \frac{(n-1)}{[n-(k+1)]}(1-R^2)$$

Rule of thumb: $n \ge 5(k+2)$ where n = sample size and k = number of predictor variables

Validating the Regression Model

Assumptions about the population:

 $Y_{i} = b_{0} + b_{1}x_{1i} + \ldots + b_{k}x_{ki} + \varepsilon_{i} \quad (i = 1, \ldots, n)$ $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are i.i.d random variables, ~ N(0, σ)

1) *Linearity*

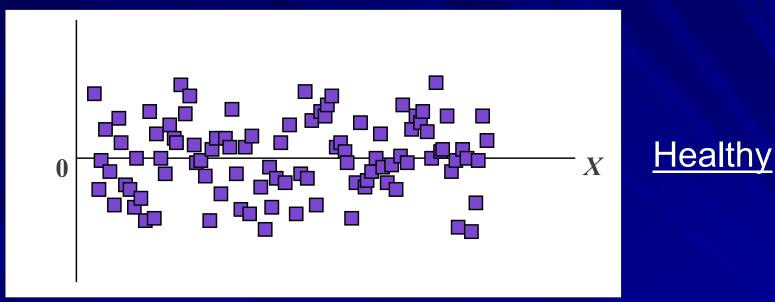
- If k = 1 (simple regression), one can check visually from scatter plot.
- "Sanity check": the sign of the coefficients, reason for non-linearity?

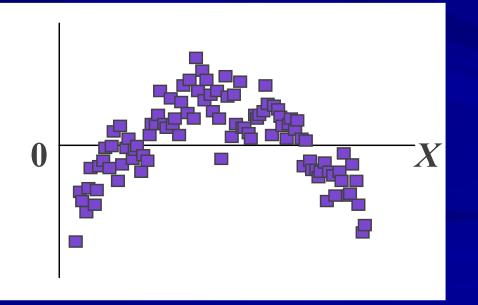
2) Normality of ε_i

- Plot the residuals $(e_i = y_i \hat{y}_i)$.
- They should look evenly random i.e. scattered.
- Then plot a histogram of the residuals. The resulting distribution should be approximately normal.

Usually, results are fairly robust with respect to this assumption.

Residual Plots

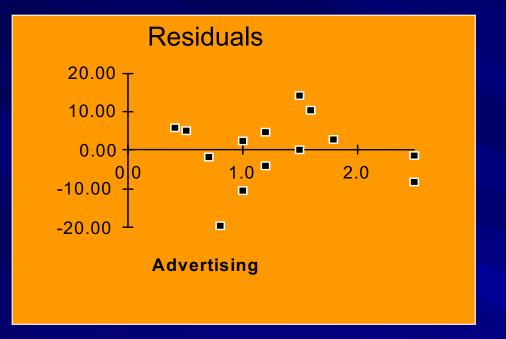


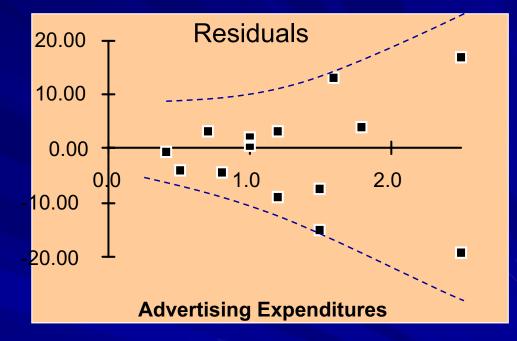


Nonlinear Can sometimes be fixed, e.g., Insert x² as a variable.

3) Heteroscedasticity

- Do error terms have constant Std. Dev.? (i.e., $SD(\varepsilon_i) = \sigma$ for all i?)
- Check scatter plot of residuals vs. Y and x variables.





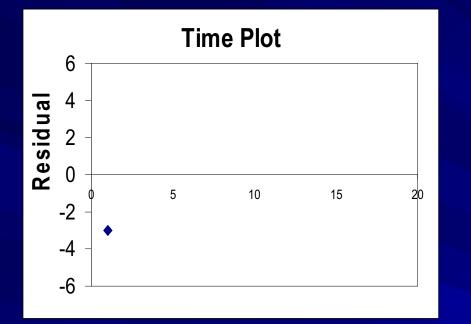
No evidence of heteroscedasticity

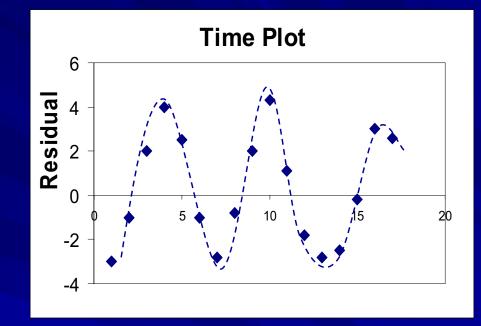
Evidence of heteroscedasticity

- May be fixed by introducing a transformation (e.g. use x² instead of x)
- May be fixed by introducing or eliminating some independent variables

4) Autocorrelation: Are error terms independent?

- Plot residuals in order and check for patterns





No evidence of autocorrelation

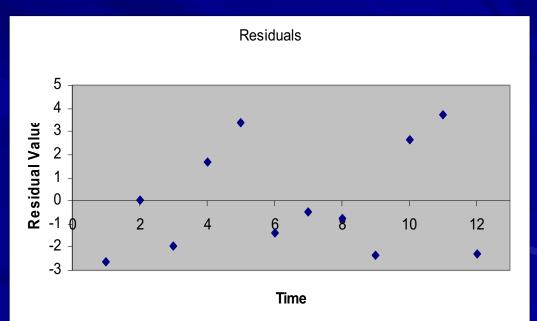
Evidence of autocorrelation

- Autocorrelation may be present if observations have a natural sequential order (for example, time).
- May be fixed by introducing a variable (frequently time) or transforming a variable.

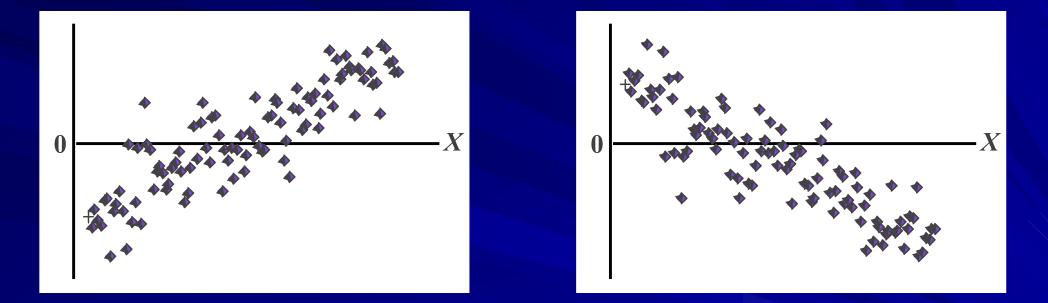
Validating the Regression Model: Autocorrelation

Sales (\$ Thousands)	Promotions (\$ Thousands)	Month
63.00	26	January
65.25	25	February
69.18	38.5	March
74.34	42	April
68.62	25.1	May
63.71	24.7	June
64.41	24.3	July
64.06	24.1	August
70.36	42.1	September
75.71	43	October
67.61	22	November
62.93	25	December

Evidence of Autocorrelation in Simple Regression in Toothpaste monthly sales and promotions



Graphs of Non-independent Error Terms (Autocorrelation)

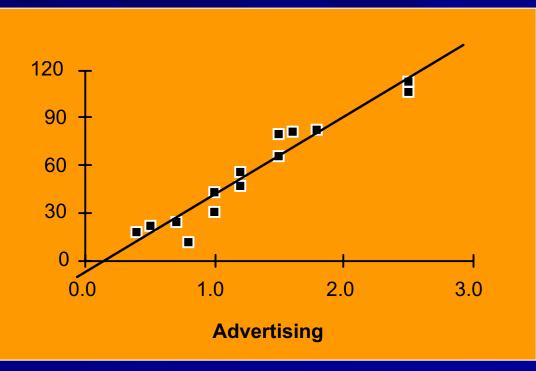


Possible solution: Insert time (sequence) of observation as a variable.

Pitfalls and Issues

1) Overspecification

- Including too many x variables to make R² fictitiously high.
- Rule of thumb: we should maintain that n >= 5(k+2)
- 2) Extrapolating beyond the range of data (Carter Racing!!)



3) Multicollinearity

- Occurs when two of the x variable are strongly correlated.
- Can give very wrong estimates for β_i 's.
- Tell-tale signs:
 - Regression coefficients (b_i's) have the "wrong" sign.
 - Addition/deletion of an independent variable results in large changes of regression coefficients
 - Regression coefficients (b_i's) not significantly different from 0
- May be fixed by deleting one or more independent variables

Can We Predict Graduate GPA from College GPA and GMAT?

Student	Graduate	College	
Number	GPA	GPA	GMAT
1	4.0	3.9	640
2	4.0	3.9	644
3	3.1	3.1	557
4	3.1	3.2	550
5	3.0	3.0	547
6	3.5	3.5	589
7	3.1	3.0	533
8	3.5	3.5	600
9	3.1	3.2	630
10	3.2	3.2	548
11	3.8	3.7	600
12	4.1	3.9	633
13	2.9	3.0	546
14	3.7	3.7	602
15	3.8	3.8	614
16	3.9	3.9	644
17	3.6	3.7	634
18	3.1	3.0	572
19	3.3	3.2	570
20	4.0	3.9	656
21	3.1	3.1	574
22	3.7	3.7	636
23	3.7	3.7	635
24	3.9	4.0	654
25	3.8	3.8	633

15.063 Summer 2003

Regression Output

R Square	0.96	
Standard Error	0.08	
Observations	25	
	Coefficients	Standard Error
Intercept	0.09540	0.28451
College GPA	1.12870	0.10233
GMAT	-0.00088	0.00092

What happened?

College GPA and GMAT are highly correlated!

			_
R Square	0.958		G
Standard Error	0.08		Co G
Observations	25		G
	Coefficients	Standard Error	
Intercept	-0.1287	0.1604	4
College GPA	1.0413	0.0455	

	Graduate	College	GMAT
Graduate	1		
College	0.98	1	
GMAT	0.86	0.90	1

Eliminate GMAT(HBS?)

Checklist for Evaluating a Linear Regression Model

- Linearity: scatter plot, common sense, and knowing your problem.
- Signs of Regression Coefficients: do they agree with intuition?
- Normality: plot residual histogram
- R²: is it reasonably high in the context?
- Heteroscedasticity: plot residuals against each x variable
- Autocorrelation: time series plot
- Multicollinearity: compute correlations between x variables
- Statistical test: are the coefficients significantly different from zero? (next time)

Summary and Look Ahead

- Regression is a way to make predictions from one or more predictor variables
- There are a lot of assumptions that must be checked to make sure the regression model is valid
- We may not get to Croq'Pain