Regression Models

Summer 2003

Does Advertising Increase Sales?

Appleglo	First-Year Advertising Expenditures (\$ millions)	First-Year Sales (\$ millions)
Region	\mathbf{x}	\mathbf{y}
Maine	$\mathbf{1 . 8}$	$\mathbf{1 0 4}$
New Hampshire	1.2	68
Vermont	0.4	39
Massachusetts	$\mathbf{0 . 5}$	43
Connecticut	$\mathbf{2 . 5}$	127
Rhode Island	$\mathbf{2 . 5}$	134
New York	$\mathbf{1 . 5}$	87
New Jersey	1.2	77
Pennsylvania	$\mathbf{1 . 6}$	102
Delaware	$\mathbf{1 . 0}$	65
Maryland	$\mathbf{1 . 5}$	$\mathbf{1 0 1}$
West Virginia	$\mathbf{0 . 7}$	$\mathbf{4 6}$
Virginia	$\mathbf{1 . 0}$	52
Ohio	$\mathbf{0 . 8}$	$\mathbf{3 3}$

Questions: i) How to relate advertising expenditure to sales?
ii) What is expected first-year sales if advertising expenditure is $\$ 2.2$ million?
iii) How confident are you in your estimate?

Regression Analysis

GOAL: Develop a formula that relates two quantities
x: "independent" (also called "explanatory") variable quantity typically under managerial control

Y: "dependent" variable magnitude is determined (to some degree) by value of x quantity to be predicted

Examples:

Y
(dependent variable)
College GPA
Lung cancer rate
Stock return
First-year sales

[^0]
Outline

- Simple Linear Regression
- Multiple Regression
- Understanding Regression Output
- Coefficient of Determination R²
- Validating the Regression Model

The Basic Model: Simple Linear Regression

Data: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ (a sample of size n taken from the population of all (X, Y) values)

Model of the population*: $\quad Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$
Comments:

- The model assumes a linear relationship between x and Y , with y intercept β_{0} and slope β_{1}
- β_{0} and β_{1} are the parameters for the whole population. We do not know them and will estimate them using b_{0} and b_{1} to be calculated from the data (i.e. from the sample of size n)
- ε_{i} is the called the error term. Since the Y's do not fall precisely on the line (i.e. they are r.v.'s) we need to add an error term to obtain an equality.
- ε_{i} is $N(0, \sigma)$. Thus, $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are i.i.d. Normally distributed r.v.'s.
- $E\left(Y_{i} \mid x_{i}\right)=\beta_{0}+\beta_{1} x_{i}$ Is the expected value of Y for a given x value. It is just the value on the line as that is where on average the Y_{i} value would fall for a given x_{i} value.
- $\operatorname{SD}\left(Y_{i} \mid x_{i}\right)=\sigma \quad$ Notice that The SD of Y_{i} is equal to the SD of ε_{i} and is a constant independent of the value of x.

How do we choose the line that "best" fits the data?

Best choices:
$\mathrm{b}_{\mathrm{o}}=13.82$
$b_{1}=48.60$

Regression coefficients: b_{0} and b_{1} are estimates of β_{0} and β_{1} Regression estimate for Y at x_{i} : $\hat{y}_{i}=b_{0}+b_{1} x_{i}$ (prediction)
Value of Y at $x_{i}: y_{i}=b_{0}+b_{1} x_{i}+e_{i}$ (use the error to obtain equality) Residual (error): $\quad \mathrm{e}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}-\hat{y}_{\mathrm{i}}$
The "best" regression line is the one that chooses b_{0} and b_{1} to minimize the total squared errors:

$$
S S R=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

SSR is the residual sum of squares, analogous to a variance calculation

How Good a Fit to the Line?

- std error s estimates σ, the std deviation of error ε_{i}
- lower figure has 10 times the error

Coefficient of Determination: R^{2}

- It is a measure of the overall quality of the regression.

Specifically, it is the percentage of total variation exhibited in the y_{i} data that is accounted for or predicted by the sample regression line.

- The sample mean of $Y: \bar{y}=\left(y_{1}+y_{2}+\ldots+y_{n}\right) / n$
- Total variation in $Y=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
- Residual (unaccounted) variation in $Y \quad=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$
(even the linear model, \hat{y}_{i}, does not explain all the the variability in y_{i})

$$
\mathrm{R}^{2}=\frac{\text { variation accounted for by } \mathrm{x} \text { variables }}{\text { total variation }}
$$

$=1$ -
variation not accounted for by x variables
total variation
$=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$
R^{2} takes values between 0 and 1 (it is a percentage).

$R^{2}=1 ; x$ values account for all variation in the Y values
$R^{2}=0 ; x$ values account for no variation in the Y values

Correlation and Regression

\square Simple regression is correlation in disguise
\square Coefficient of Determination = squared correlation coefficient
\square Regression coefficient: $\mathrm{b}_{1}=$ correlation ${ }^{*} \mathrm{~s}_{\mathrm{y}} / \mathrm{s}_{\mathrm{x}}$
\square Appleglo: Sales $=13.82+48.60$ * Advertising
\square The coefficients are in units of sales and advertising. If advertising is $\$ 2.2$ Million, then sales will be $13.82+48.60$ * $2.2=\$ 120.74 \mathrm{M}$
\square What if there are >1 predictor variable?

Sales of Nature-Bar (\$ million)

region	$\underset{\text { sales }}{Y}$	advertisīng	$\underset{\text { promotions }}{\underline{\mathrm{X}}_{2}}$	competitor's sales
Selkirk	101.8	1.3	0.2	20.40
Susquehanna	44.4	0.7	0.2	30.50
Kittery	108.3	1.4	0.3	24.60
Acton	85.1	0.5	0.4	19.60
Finger Lakes	77.1	0.5	0.6	25.50
Berkshire	158.7	1.9	0.4	21.70
Central	180.4	1.2	1.0	6.80
Providence	64.2	0.4	0.4	12.60
Nashua	74.6	0.6	0.5	31.30
Dunster	143.4	1.3	0.6	18.60
Endicott	120.6	1.6	0.8	19.90
Five-Towns	69.7	1.0	0.3	25.60
Waldeboro	67.8	0.8	0.2	27.40
Jackson	106.7	0.6	0.5	24.30
Stowe	119.6	1.1	0.3	13.70

Multiple Regression

- In general, there are many factors in addition to advertising expenditures that affect sales
- Multiple regression allows more than one independent variable Independent variables: $\quad \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}} \quad$ (k of them)

Data: $\left(\mathrm{y}_{1}, \mathrm{x}_{11}, \mathrm{x}_{21}, \ldots, \mathrm{x}_{\mathrm{k} 1}\right), \ldots,\left(\mathrm{y}_{\mathrm{n} 1}, \mathrm{x}_{\mathrm{n} 1}, \mathrm{x}_{\mathrm{n} 2}, \ldots, \mathrm{x}_{\mathrm{kn}}\right)$,
Population Model: $\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{1 \mathrm{i}}+\ldots+\beta_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}+\varepsilon_{\mathrm{i}}$ $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\mathrm{n}}$ are i.i.d random variables, $\sim N(0, \sigma)$

Regression coefficients: $b_{0}, b_{1}, \ldots, b_{k}$ are estimates of $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$.
Regression Estimate of $y_{i}: \hat{y}_{i}=b_{0}+b_{1} x_{1 i}+\ldots+b_{k} x_{k i}$
Goal: Choose $b_{0}, b_{1}, \ldots, b_{k}$ to minimize the residual sum of squares. i.e., minimize:

$$
\operatorname{SSR}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Regression Output (from Excel)

Regression Statistics	
Multiple R	0.913
R Square	0.833
Adjusted R Square	0.787
Standard Error	17.600
Observations	15

Standard error s: an estimate of σ
Analysis of

Variance

	Sum of Squares	Mean Square	F	Significance \boldsymbol{F}	
Regression	3	16997.537	5665.85	18.290	0.000
Residual	11	3407.473	309.77		
Total	14	20405.009			

	Coefficients	Standard Error	t Statistic	P- value	Lower 95%	Upper 95%
Intercept	65.71	27.73	2.37	0.033	4.67	126.74
Advertising	48.98	10.66	4.60	0.000	25.52	72.44
Promotions	59.65	23.63	2.53	0.024	7.66	111.65
Competitor's Sales	-1.84	0.81	-2.26	0.040	-3.63	-0.047

Understanding Regression Output

1) Regression coefficients: $b_{0}, b_{1}, \ldots, b_{k}$ are estimates of $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ based on sample data. Fact: $E\left[b_{j}\right]=\beta_{j}$.
(i.e., if we run the multiple regression many many times, the average value of the b_{j} 's we get is β)
Example:
$\mathrm{b}_{0}=65.705$ (its interpretation is context dependent, in this case, sales if no advertising, no promotions, and no competition)
$\mathrm{b}_{1}=48.979$ (an additional $\$ 1$ million in advertising is expected to result in an additional $\$ 49$ million in sales)
$\mathrm{b}_{2}=59.654$ (an additional $\$ 1$ million in promotions is expected to result in an additional $\$ 60$ million in sales)
$b_{3}=-1.838$ (an increase of $\$ 1$ million in competitor sales is expected to decrease sales by $\$ 1.8$ million)

Understanding Regression Output, Continued

2) Standard error s: an estimate of σ, the SD of each ε_{i}. It is a measure of the amount of "noise" in the model.

Example: s=17.60
3) Degrees of freedom: to be explained later.
4) Standard errors of the coefficients: $\mathrm{s}_{\mathrm{bo}}, \mathrm{s}_{\mathrm{b}_{1}}, \ldots, \mathrm{~s}_{\mathrm{bk}}$ They are just the standard deviations of the estimates $\mathrm{b}_{0}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}$.

They are useful in assessing the quality of the coefficient estimates and validating the model. (Explained later).

Coefficient of Determination: R^{2}

- A high R^{2} means that most of the variation we observe in the y_{i} data can be attributed to their corresponding x values
-- a desired property.
- In multiple regression, R is called "Multiple R"
- In simple regression, the R^{2} is higher if the data points are better aligned along a line. The corresponding picture in multiple regression is a plot of predicted y_{i} vs. the actual y_{i} data.
- How high a R^{2} is "good" enough depends on the situation (for example, the intended use of the regression, and complexity of the problem).
- Users of regression tend to be fixated on R^{2}, but it's not the whole story. It is important that the regression model is "valid."

Caution about R^{2}

- One should not include x variables unrelated to Y in the model, just to make the R^{2} fictitiously high. New x variables will account for some additional variance by chance alone ("fishing"), but these would not be validated in new samples.
- Adjusted R^{2} modifies R^{2} to account for the number of variables and the sample size, therefore counteracting "fishing":

Adjusted $R^{2}=1-\frac{(n-1)}{\left[n-R^{2}\right)}$

$$
[n-(k+1)]
$$

Rule of thumb: $n>=5(k+2)$ where $n=$ sample size and $k=$ number of predictor variables

Validating the Regression Model

Assumptions about the population:

$$
\begin{aligned}
& Y_{i}=b_{0}+b_{1} x_{1 i}+\ldots+b_{k} x_{k i}+\varepsilon_{i}(i=1, \ldots, n) \\
& \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \text { are i.i.d random variables, } \sim N(0, \sigma)
\end{aligned}
$$

1) Linearity

- If k = 1 (simple regression), one can check visually from scatter plot.
- "Sanity check": the sign of the coefficients, reason for non-linearity?

2) Normality of ε_{i}

- Plot the residuals ($\mathrm{e}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}-\hat{\mathrm{y}}_{\mathrm{i}}$).
- They should look evenly random - i.e. scattered.
- Then plot a histogram of the residuals. The resulting distribution should be approximately normal.
Usually, results are fairly robust with respect to this assumption.

Residual Plots

Healthy

Nonlinear
Can
sometimes be fixed, e.g., Insert x^{2} as a variable.
3) Heteroscedasticity

- Do error terms have constant Std. Dev.? (i.e., $\operatorname{SD}\left(\varepsilon_{\mathrm{i}}\right)=\sigma$ for all i?)
- Check scatter plot of residuals vs. Y and x variables.

No evidence of heteroscedasticity

Evidence of heteroscedasticity

- May be fixed by introducing a transformation (e.g. use x^{2} instead of x)
- May be fixed by introducing or eliminating some independent variables

4) Autocorrelation: Are error terms independent?

- Plot residuals in order and check for patterns

No evidence of autocorrelation

Evidence of autocorrelation

- Autocorrelation may be present if observations have a natural sequential order (for example, time).
- May be fixed by introducing a variable (frequently time) or transforming a variable.

Validating the Regression Model: Autocorrelation

Sales ($\$$Thousands)	Promotions (\$ Thousands)	Month
63.00	26	January
65.25	25	February
69.18	38.5	March
74.34	42	April
68.62	25.1	May
63.71	24.7	June
64.41	24.3	July
64.06	24.1	August
70.36	42.1	September
75.71	43	October
67.61	22	November
62.93	25	December

\square Evidence of Autocorrelation in Simple Regression in Toothpaste monthly sales and promotions

Graphs of Non-independent Error Terms (Autocorrelation)

Possible solution: Insert time (sequence) of observation as a variable.

Pitfalls and Issues

1) Overspecification

- Including too many x variables to make R^{2} fictitiously high.
- Rule of thumb: we should maintain that $\mathrm{n}>=5(\mathrm{k}+2)$

2) Extrapolating beyond the range of data (Carter Racing!!)

Pitfalls and Issues

3) Multicollinearity

- Occurs when two of the x variable are strongly correlated.
- Can give very wrong estimates for β_{i} 's.
- Tell-tale signs:
- Regression coefficients (b_{i} 's) have the "wrong" sign.
- Addition/deletion of an independent variable results in large changes of regression coefficients
- Regression coefficients (b,'s) not significantly different from 0
- May be fixed by deleting one or more independent variables

Can We Predict Graduate GPA from College GPA and GMAT?

Student Number	Graduate GPA	College GPA	GMAT
1	4.0	3.9	640
2	4.0	3.9	644
3	3.1	3.1	557
4	3.1	3.2	550
5	3.0	3.0	547
6	3.5	3.5	589
7	3.1	3.0	533
8	3.5	3.5	600
9	3.1	3.2	630
10	3.2	3.2	548
11	3.8	3.7	600
12	4.1	3.9	633
13	2.9	3.0	546
14	3.7	3.7	602
15	3.8	3.8	614
16	3.9	3.9	644
17	3.6	3.7	634
18	3.1	3.0	572
19	3.3	3.2	570
20	4.0	3.9	656
21	3.1	3.1	574
22	3.7	3.7	636
23	3.7	3.7	635
24	3.9	4.0	654
25	3.8	3.8	633

Regression Output

R Square	0.96	
Standard Error	0.08	
Observations	25	
	Coefficients	
	Standard Error	
	0.09540	0.28451
Intercept	1.12870	0.10233
College GPA	-0.00088	0.00092
GMAT		

What happened?

College GPA and GMAT are highly correlated!

	Graduate	College	GMAT
Graduate	1		
College	0.98	1	
GMAT	0.86	0.90	1

Eliminate GMAT(HBS?)

Checklist for Evaluating a Linear Regression Model

- Linearity: scatter plot, common sense, and knowing your problem.
- Signs of Regression Coefficients: do they agree with intuition?
- Normality: plot residual histogram
- R^{2} : is it reasonably high in the context?
- Heteroscedasticity: plot residuals against each x variable
- Autocorrelation: time series plot
- Multicollinearity: compute correlations between x variables
- Statistical test: are the coefficients significantly different from zero? (next time)

Summary and Look Ahead

\square Regression is a way to make predictions from one or more predictor variables
\square There are a lot of assumptions that must be checked to make sure the regression model is valid
\square We may not get to Croq'Pain

[^0]: X
 (independent variable) SAT score

 Amount of cigarette smoking
 Spending in R\&D
 Advertising expenditures

