6.265-15.070
 Midterm Exam

Date: October 30, 2013

6pm-8pm

80 points total

Problem 1 ($\mathbf{3 0}$ points) . Suppose a random variable X is such that $\mathbb{P}(X>1)=0$ and $\mathbb{P}(X>1-\epsilon)>0$ for every $\epsilon>0$. Recall that the large deviations rate function is defined to be $I(x)=\sup _{\theta}(\theta x-\log M(\theta))$ for every real value x, where $M(\theta)=\mathbb{E}[\exp (\theta X)]$, for every real value θ.
(a) Show that $I(x)=\infty$ for every $x>1$.
(b) Show that $I(x)<\infty$ for every $\mathbb{E}[X] \leq x<1$.
(c) Suppose $\lim _{\epsilon \rightarrow 0} \mathbb{P}(1-\epsilon \leq X \leq 1)=0$. Show that $I(1)=\infty$.

Problem 2 (20 points) Recall the following one-dimensional version of the Large Deviations Principle for finite state Markov chains. Given an N-state Markov chain $X_{n}, n \geq 0$ with transition matrix $P_{i, j}, 1 \leq i, j \leq N$ and a function $f:\{1, \ldots, N\} \rightarrow \mathbb{R}$, the sequence $\frac{S_{n}}{n}=\frac{\sum_{1 \leq i \leq n} f\left(X_{i}\right)}{n}$ satisfies the Large Deviations Principle with the rate function $I(x)=\sup _{\theta}\left(\theta x-\log \rho\left(P_{\theta}\right)\right)$, where $\rho\left(P_{\theta}\right)$ is the Perron-Frobenius eigenvalue of the matrix $P_{\theta}=\left(e^{\theta f(j)} P_{i, j}, 1 \leq i, j \leq N\right)$.

Suppose $P_{i, j}=\pi_{j}$ for some probability vector $\pi_{j} \geq 0,1 \leq j \leq N, \sum_{j} \pi_{j}=1$. Namely, the observations X_{n} for $n \geq 1$ are i.i.d. with the probability mass function given by π. In this case we know that the large deviations rate function for the i.i.d. sequence $f\left(X_{n}\right), n \geq 1$ is described by the moment generating function of $f\left(X_{n}\right), n \geq 1$. Establish that the two large deviations rate functions are identical, and thus the LDP for Markov chains in this case is consistent with the LDP for i.i.d. processes.

HINT: consider the left-eigenvector of P_{θ} corresponding to the eigenvalue $\rho\left(P_{\theta}\right)$.

Problem 3 (30 points) The following two parts can be done independently.
(a) Suppose, $X_{n}, n \geq 0$ is a martingale such that the distribution of X_{n} is identical for all n and the second moment of X_{n} is finite. Establish that $X_{n}=X_{0}$ almost surely for all n.
(b) An urn contains two white balls and one black ball at time zero. At each time $t=$ $1,2, \ldots$ exactly one ball is added to the urn. Specifically, if at time $t \geq 0$ there are W_{t} white balls and B_{t} black balls, the ball added at time $t+1$ is white with probability $W_{t} /\left(W_{t}+B_{t}\right)$ and is black with the remaining probability $B_{t} /\left(W_{t}+B_{t}\right)$. In particular, since there were three balls at the beginning, and at every time $t \geq 1$ exactly one ball is added, then $W_{t}+B_{t}=t+3, t \geq 0$. Let T be the first time when the proportion of white balls is exactly 50% if such a time exists, and $T=\infty$ if this is never the case. Namely $T=\min \left\{t: W_{t} /\left(W_{t}+B_{t}\right)=1 / 2\right\}$ if the set of such t is non-empty, and $T=\infty$ otherwise. Establish an upper bound $\mathbb{P}(T<\infty) \leq 2 / 3$.
Hint: Show that $W_{t} /\left(W_{t}+B_{t}\right)$ is a martingale and use the Optional Stopping Theorem.

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

