6.265-15.070 Midterm Exam

Date: October 30, 2013

6pm-8pm

80 points total

Problem 1 (30 points) . Suppose a random variable X is such that $\mathbb{P}(X > 1) = 0$ and $\mathbb{P}(X > 1 - \epsilon) > 0$ for every $\epsilon > 0$. Recall that the large deviations rate function is defined to be $I(x) = \sup_{\theta}(\theta x - \log M(\theta))$ for every real value x, where $M(\theta) = \mathbb{E}[\exp(\theta X)]$, for every real value θ .

- (a) Show that $I(x) = \infty$ for every x > 1.
- (b) Show that $I(x) < \infty$ for every $\mathbb{E}[X] \le x < 1$.
- (c) Suppose $\lim_{\epsilon \to 0} \mathbb{P}(1 \epsilon \leq X \leq 1) = 0$. Show that $I(1) = \infty$.

Problem 2 (20 points) Recall the following one-dimensional version of the Large Deviations Principle for finite state Markov chains. Given an N-state Markov chain $X_n, n \ge 0$ with transition matrix $P_{i,j}, 1 \le i, j \le N$ and a function $f : \{1, \ldots, N\} \to \mathbb{R}$, the sequence $\frac{S_n}{n} = \frac{\sum_{1 \le i \le n} f(X_i)}{n}$ satisfies the Large Deviations Principle with the rate function $I(x) = \sup_{\theta} (\theta x - \log \rho(P_{\theta}))$, where $\rho(P_{\theta})$ is the Perron-Frobenius eigenvalue of the matrix $P_{\theta} = (e^{\theta f(j)}P_{i,j}, 1 \le i, j \le N)$.

Suppose $P_{i,j} = \pi_j$ for some probability vector $\pi_j \ge 0, 1 \le j \le N$, $\sum_j \pi_j = 1$. Namely, the observations X_n for $n \ge 1$ are i.i.d. with the probability mass function given by π . In this case we know that the large deviations rate function for the i.i.d. sequence $f(X_n), n \ge 1$ is described by the moment generating function of $f(X_n), n \ge 1$. Establish that the two large deviations rate functions are identical, and thus the LDP for Markov chains in this case is consistent with the LDP for i.i.d. processes.

HINT: consider the left-eigenvector of P_{θ} corresponding to the eigenvalue $\rho(P_{\theta})$.

Problem 3 (30 points) The following two parts can be done independently.

(a) Suppose, $X_n, n \ge 0$ is a martingale such that the distribution of X_n is identical for all n and the second moment of X_n is finite. Establish that $X_n = X_0$ almost surely for all n.

Midterm Exam

(b) An urn contains two white balls and one black ball at time zero. At each time t = 1, 2, ... exactly one ball is added to the urn. Specifically, if at time $t \ge 0$ there are W_t white balls and B_t black balls, the ball added at time t + 1 is white with probability $W_t/(W_t + B_t)$ and is black with the remaining probability $B_t/(W_t + B_t)$. In particular, since there were three balls at the beginning, and at every time $t \ge 1$ exactly one ball is added, then $W_t + B_t = t + 3, t \ge 0$. Let T be the first time when the proportion of white balls is exactly 50% if such a time exists, and $T = \infty$ if this is never the case. Namely $T = \min\{t : W_t/(W_t + B_t) = 1/2\}$ if the set of such t is non-empty, and $T = \infty$ otherwise. Establish an upper bound $\mathbb{P}(T < \infty) \le 2/3$.

Hint: Show that $W_t/(W_t + B_t)$ is a martingale and use the Optional Stopping Theorem.

15.070J / 6.265J Advanced Stochastic Processes Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.