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Martingales and stopping times II  
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1. Second stopping theorem. 

2. Doob-Kolmogorov inequality. 

3. Applications of stopping theorems to hitting times of a Brownian motion. 

1 Second stopping theorem 

In the previous lecture we established no gambling scheme can produce a pos
itive gain in expectation if there is a limit on the number of rounds the game is 
played. We now establish a similar result assuming that there is a limit on the 
amount of wealth possessed by the player. 

Theorem 1. Suppose Xn is a supermartingale that is uniformly bounded. That 
is |Xn| ≤ M a.s., for some M . Suppose τ is a stopping time. Then E[Xτ ] ≤ 
E[X0]. If, in addition Xn is a martingale, then E[Xτ ] = E[X0]. 

The gambling interpretation of this theorem is as follows: suppose we tried 
to use the ”double the stakes” algorithm, which we know guarantees winning a 
dollar, when there are no restrictions. But now suppose that there is a limit on 
how ”negative” we can go (for example the amount of debt allowed). Say this 
limit is M . Consider a modified process Yn = Xn∧τ . Then from our description 
−M ≤ Yn ≤ 1 < M . Also we remember from the previous lecture that Yn is 
a supermartingale. Thus it is a bounded supermartingale. Theorem 1 then tells 
us that E[Yτ ] = E[Xτ ] ≤ E[X0], namely the scheme does not work anymore. 
(Remember that without the restriction, the scheme produces wealth Xτ = 1 
with probability one. In particular, E[Xτ ] = 1 > X0 = 0). 

Proof of Theorem 1. . Observe, that E[|Xτ |] ≤ M < ∞. Consider Yn = 
Xn∧τ . Then Yn converges to Xτ a.s. as n → ∞. Since |Yn| ≤ M a.s., then 
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using the Bounded Convergence Theorem, limn→∞ E[Yn] = E[Xτ ]. On the 
other hand, we established in Corollary 1 in the previous lecture, that Yn is a 
supermartingale. Therefore E[Yn] ≤ E[Y0] = E[X0]. Combining, we obtain 
E[Xτ ] ≤ E[X0]. 

Doob-Kolmogorov inequality 

We now establish a technical but a very useful result, which is an analogue of 
Markov/Chebyshev’s bounds on random variables. 

Theorem 2 (Doob-Kolmogorov inequality). Suppose Xn is a non-negative 
submartingale adapted to {Fn} and E > 0. Then for every n ∈ N 

E[X2]nP( max Xn ≥ E) ≤ . 
1≤m≤n E2 

If Xn is a martingale, then the non-negativity condition can be dropped. 

The convenience of this result is that we can bound the worst case deviation 
of a submartingale using its value at the end of time interval. 

Proof. Using Jensen’s inequality we established that if Xn is a martingale then 
|Xn| is a submartingale. Since |Xn| is non-negative, the second part follows 
from the first. 

To establish the first part, consider the events A = {max1≤m≤n Xm ≤ E}
and 
Bm = {max1≤i≤m−1 Xi ≤ E, Xm > E}. Namely, A is the event that the 
submartingale never exceeds E and Bm is the event that it does so at time m for 
the first time. We have Ω = A ∪∪1≤m≤nBm and the events A, Bm are mutually 
exclusive. Then   

E[X2] = E[X21{A}] + E[X21{Bm}] ≥ E[X21{Bm}].n n n n

1≤m≤n 1≤m≤n 

Note 

E[X21{Bm}] = E[(Xn − Xm + Xm)21{Bm}]n

= E[(Xn − Xm)21{Bm}] + 2E[(Xn − Xm)Xm1{Bm}] + E[X2 1{Bm}]m

The first of the summands is non-negative. The last is at least E2P(Bm), 
since on the event Bm we have Xm > E. We now analyze the second term and 
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here we use the tower property:
 

E[(Xn − Xm)Xm1{Bm}] = E[E[(Xn − Xm)Xm1{Bm}|Fm]] 
= E[Xm1{Bm}E[(Xn − Xm)|Fm]] 
≥ 0, 

where the second equality follows since 1{Bm} ∈ Fm and the last inequality 
follows since Xn is a submartingale and Xm1{Bm} ≥ E > 0 on ω ∈ Bm and 
= 0 on ω /∈ Bm. We conclude that 

E[X2] ≥ E2P(Bm) = E2P(∪mBm) = E2P( max Xm > E).n
1≤m≤n 

1≤m≤n 

This concludes the proof. 

Corollary 1. Suppose Xn is a martingale and p ≥ 1. Then for every E > 0 

E[|Xn|p]P( max |Xn| ≥ E) ≤ . 
1≤m≤n Ep 

Proof. The proof of the general case is more complicated, but when p ≥ 2 we 
almost immediately obtain the result. Using conditional Jensen’s inequality we 
know that |Xn

negative. Function x 2
p

| is a submartingale, as | · | is a convex function. It is also non-
is convex increasing when p ≥ 2 and x ≥ 0. Recall from 

the previous lecture that this implies |Xn

Theorem 2 we obtain 
| 2
p

is also a submartingale. Applying
 

) ≤  
E[|Xn|p]  

Ep  .  
pp

P( max |Xn| ≥ E) = P( max |Xn|
1≤m≤n 1≤m≤n 

≥ E 2 2

Analogue of this corollary holds in continuous time when the process is 
continuous. We just state this result without proving it. 

Theorem 3. Suppose {Xt}t∈R+ is a martingale which has a.s. continuous sam
ple paths. Then for every p ≥ 1, T > 0, E > 0, 

E[|XT |p]P( sup |Xt| ≥ E) ≤ . 
Ep0≤t≤T 
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3 Applications to hitting times of a Brownian motion  

We now use the martingale theory and optional stopping theorems to derive 
some properties of hitting times of a Brownian motion. Our setting is either 
a standard Brownian motion B(t) or a Brownian motion with drift Bµ(t) = 
µt + σB(t). In both cases the starting value is assumed 0. We fix a < 0 < b 
and ask the question: what is the probability that Bµ(t) hits a before b? For 
simplicity we use B instead of Bµ, but mention that we talk about Brownian 
motion with drift. 

We define 

Ta = inf{t : Bµ(t) = a}, Tb = inf{t : Bµ(t) = b}, Tab = min(Ta, Tb). 

In Lecture 6, Problem 1 we established that when B is standard, lim supt B(t) = 
∞ a.s. Thus Tb < ∞ a.s. By symmetry, Ta < ∞ a.s. Now we ask the question: 
what is the probability P(Tab = Ta)? We will use the optional stopping theorems 
established before. The only issue is that we are now dealing with continuous 
time processes. The derivations of stopping theorems require more details (for 
example defining predictable sequences is trickier). We skip the details and just 
assume that optional stopping theorems apply in our case as well. 

The case of the standard Brownian motion is the simplest. 

Theorem 4. Let Ta, Tb, Tab be defined with respect to the standard Brownian 
motion B(t). Then 

|b|
P(Tab = Ta) = . 

|a| + |b|
Proof. Recall that B is a martingale. Observe that Tab defines a stopping time: 
the event {Tab ≤ t} ∈ Bt (stopping Tab ≤ t is determined completely by the 
path of the Brownian motion up to time t). Therefore by Corollary 1 in the 
previous lecture, Yt £ B(t ∧ Tab) is also a martingale. Note that it is a bounded 
martingale, since its absolute value is at most max(|a|, |b|). Theorem 1 applied 
to Yt then implies that E[YTab ] = E[B(Tab)] = E[Y0] = E[B(0)] = 0. On the 
other hand, when Tab = Ta, we have B(Tab) = B(Ta) = a and, conversely, 
when Tab = Tb, we have B(Tab) = B(Tb) = b. Therefore 

E[B(Tab)] = aP(Tab = Ta) + bP(Tab = Tb) = −|a|P(Tab = Ta) + |b|P(Tab = Tb) 

Since P(Tab = Ta)+P(Tab = Tb) = 1, then, combining with the fact E[B(Tab)] 
we obtain 

|b| |a|
P(Tab = Ta) = , P(Tab = Tb) = . 

|a| + |b| |a| + |b| 
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We now consider the more difficult case, when the drift of the Brown
ian motion µ  0. Specifically, assume µ < 0. Recall, that in this case = 
limt→∞ B(t) = −∞ a.s., so Tab ≤ Ta < ∞ a.s. Again we want to compute 
P(Tab = Ta). 

1We fix drift µ < 0, variance σ2 > 0 and consider q(β) = µβ + σ2β2 .2 

Proposition 1. For every β, the process V (t) = eβB(t)−q(β)t is a martingale. 

Proof. We first need to check that E[|V (t)|] < ∞. We leave it as an exercise. 
We have for every 0 ≤ s < t 

β(B(t)−B(s)) −q(β)(t−s)E[V (t)|Bs] = E[e e e βB(s)−q(β)s|Bs] 
β(B(t)−B(s))]e −q(β)(t−s) βB(s)−q(β)s = E[e e 

−q(β)(t−s)E[e β(B(t)−B(s))]V (s).= e 

where the second equality follows from the ind. increments property of the 
βB(s)−q(β)sBrownian motion, and from the fact E[eβB(s)−q(β)s|Bs] = e . Since 

d
B(t) − B(s) = N(µ(t − s), σ2(t − s)), then E[eβ(B(t)−B(s))] is the Laplace 
transform of this normal r.v. which is 

βµ(t−s)+ 1 σ2β2(t−s) q(β)(t−s)
2e = e . 

Combining, we obtain that E[V (t)|Bs] = V (s). Therefore V (t) is a martingale. 

Now that we know that V (t) is a martingale, we can try to apply the optional 
stopping theorem. For that we need to have a stopping time, and we will use 
Tab. We also need conditions for which the expected value at the stopping time 
is equal to the expected value at time zero. We use the following observation. 
Suppose β is such that q(β) ≥ 0. Then 0 ≤ V (t∧Tab) ≤ eβb a.s. Indeed, the left 
side of the inequality follows trivially from non-negativity of V . For the right

−β|a| βb) βb hand side, observe that for t ≤ Tab we have V (t) ≤ max(e , e = e , 
and the assertion follows. Thus V is a.s. a bounded martingale. Again we use 
Theorem 1 to conclude that 

E[V (Tab)] = V (0) = 1. (1) 

We now set β = −2µ/σ2. Then q(β) = 0. Note that 

− 2µa 
σ2V (Tab)1{Tab = Ta} = e 1{Tab = Ta} 

− 2µb 
σ2V (Tab)1{Tab = Tb} = e 1{Tab = Tb} 
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The previous identity gives 

− 2µa	 − 2µb 
σ2	 σ21 = E[V (Tab)] = e P(Tab = Ta) + e P(Tab = Tb). 

From this and using µ < 0, we recover 

− 2µa 2|µ||a|− 
σ2	 σ21 − e 1 − e

P(Tab = Tb) = 
− 2µb − 2µa = 

2|µ||b| 2|µ||a| . 
σ2 σ2e − e e σ2 − e − 

σ2 

Compared with the driftless case, the probability of hitting b first is exponentially 
”tilted”. Now let us take a → −∞. The events Aa = {Tab = Ta} are monotone: 

tAa ⊃ Aa' for a < a < 0. Therefore 

2|µ||a|� − �1 − e σ2	 2|µ||b|− 
σ2P(∩a<0Aa) = lim P(Aa) = lim 1 − 

2|µ||b| 2|µ||a| = 1 − e . 
a→−∞ a→−∞	 − 

σ2 σ2e − e 

But what is the event ∩a<0Aa? Since Brownian motion has continuous paths, 
this event is exactly the event that the Brownian motion never hits the positive 
level b. That is the event supt≥0 B(t) < b. We conclude that when the drift µ of 
the Brownian motion is negative 

2|µ||b|− 
σ2P(sup B(t) ≥ b) = e . 

t≥0 

Recall, from Lecture 6, that we already established this fact directly from the 
properties of the Brownian motion – the supremum of a Brownian motion with 
a negative drift has an exponential distribution with parameter 2|µ|/σ2 . 

Additional reading materials 

• Durrett [1] Chapter 4. 

• Grimmett and Stirzaker [2] Section 7.8. 
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