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Azuma-Hoeffding inequality 

Suppose Xn is a martingale wrt filtration Fn such that X0 = 0 The goal of this 
lecture is to obtain bounds of the form P(|Xn| ≥ δn) ≤ exp(−Θ(n)) under 
some condition on Xn. Note that since E[Xn] = 0, the deviation from zero is 
the ”right” regime to look for rare events. It turns out the exponential bound of 
the form above holds under very simple assumption that the increments of Xn 
are bounded. The theorem below is known as Azuma-Hoeffding Inequality. 

Theorem 1 (Azuma-Hoeffding Inequality). Suppose Xn, n ≥ 1 is a martin
gale such that X0 = 0 and |Xi − Xi−1| ≤ di, 1 ≤ i ≤ n almost surely for some 
constants di, 1 ≤ i ≤ n. Then, for every t > 0,   

t2 
P (|Xn| > t) ≤ 2 exp − � .n d22 i=1 i

Notice that in the special case when di = d, we can take t = xn and obtain p  
an upper bound 2 exp −x2n/(2d2) - which is of the form promised above. 
Note that this is consistent with the Chernoff bound for the special case Xn is 
the sum of i.i.d. zero mean terms, though it is applicable only in the special case 
of a.s. bounded increments. 

Proof. f(x) £ exp(λx) is a convex function in x for any λ ∈ R. Then we have 
f(−di) = exp(−λdi) and f(di) = exp(λdi). Using convexity we have that 
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when |x/di| ≤ 1 

1 x 1 x 
exp(λx) = f(x) = f ( + 1)di + (1 − )(−di)

2 di 2 di 

1 x 1 x ≤ + 1 f(di) + 1 − f(−di)
2 di 2 di 
f(di) + f(−di) f(di) − f(−di) 

= + x. (1)
2 2 

Further, for every a 
∞ ∞ ∞ k  k  2kexp(a) + exp(−a) a (−1)ka a

= + = 
2 k! k! (2k)!

k=0 k=0 k=0 
∞ a2k 

≤ (because 2kk! ≤ (2k)!)
2kk! 

k=0 
∞ (a

2 
)k 2a2= = exp( ). (2)

k! 2 
k=0 

We conclude that for every x such that |x/di| ≤ 1 

d2 exp(λdi) − exp(−λdi)iexp(λx) ≤ exp( ) + x. (3)
2 2 

We now turn to our martingale sequence Xn. For every t > 0 and every λ > 0 
we have 

P(Xn ≥ t) = P (exp(λXn) ≥ exp(λt)) 
≤ exp(−λt)E[exp(λXn)]  
= exp(−λt)E[exp(λ (Xi − Xi−1))], 

1≤i≤n 

where X0 = 0 was used in the last equality. Applying the tower property of 
conditional expectation we have ⎡ ⎤    

E ⎣exp(λ (Xi − Xi−1))⎦  
1≤i≤n  ⎡ ⎡ ⎤⎤  ⎦⎦= E ⎣E ⎣exp(λ(Xn − Xn−1)) exp(λ (Xi − Xi−1))|Fn−1 . 

1≤i≤n−1 
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Now, since Xi, i ≤ n − 1 are measurable wrt Fn−1, then ⎡ ⎤ 

E ⎣exp(λ(Xn − Xn−1)) exp(λ (Xi − Xi−1))|Fn−1⎦  
1≤i≤n−1  

= exp(λ (Xi − Xi−1))E [exp(λ(Xn − Xn−1))|Fn−1]  
1≤i≤n−1  

≤ exp(λ (Xi − Xi−1))× 
1≤i≤n−1 

λ2d2 exp(λdi) − exp(−λdi)n× exp + E[Xn − Xn−1|Fn−1] ,
2 2 

where (3) was used in the last inequality. Martingale property implies E[Xn − 
Xn−1|Fn−1] = 0, and we have obtained an upper bound ⎡ ⎤ ⎡ ⎤ 

λ2d2 
nE ⎣exp(λ (Xi − Xi−1))⎦ ≤ E ⎣exp(λ (Xi − Xi−1))⎦ exp 

2 
1≤i≤n 1≤i≤n−1 

Iterating further we obtain the following upper bound on P(Xn ≥ t):   
λ2d2 

1≤i≤n i
exp(−λt) exp

2

Optimizing over the choice of λ, we see that the tightest bound is obtained by 
setting λ = t/ d2 > 0, leading to an upper bound i i 

t2 
P(Xn ≥ t) ≤ exp − . 

2 i d
2 
i 

A similar approach using λ < 0 gives for every t > 0 

t2 
P(Xn ≤ −t) ≤ exp − . 

2 i d
2 
i 

Combining, we obtain the required result. 

2 Application to Lipschitz continuous functions of i.i.d. random variables 

Suppose X1, ..., Xn are independent random variables. Suppose g : Rn → R is 
a function and d1, . . . , dn are constants such that for any two vectors x1, . . . , xn 
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and y1, . . . , yn 

n 

|g(x1, . . . , xn) − g(y1, . . . , yn)| ≤  (4)di1{xi = yi}. 
i=1 

In particular when a vector x changes value only in its i-th coordinate the amount 
of change in function g is at most di. As a special case, consider a subset of vec
tors x = (x1, . . . , xn) such that |xi| ≤ ci and suppose g is Lipschitz continuous 
with constant K. Namely, for for every x, y, |g(x) − g(y)| ≤ K|x − y|, where 
|x − y| = |xi − yi|. Then for any two such vectors i 

|g(x) − g(y)| ≤ K|x − y| ≤ K 2ci|xi − yi|, 
i 

and therefore this fits into a previous framework with di = Kci. 

Theorem 2. Suppose Xi, 1 ≤ i ≤ n are i.i.d. and function g : Rn → R satisfies 
(4). Then for every t ≥ 0 

t2 
P(|g(X1, ..., Xn) − E[g(X1, ..., Xn)]| > t) ≤ 2 exp − . 

2 i d
2 
i 

Proof. Let Fi be the σ-field generated by variables X1, . . . , Xi: Fi = σ(X1, ..., Xi). 
For convenience, we also set F0 to be the trivial σ-field consisting of Ø, Ω, so 
that E[Z|F0] = E[Z] for every r.v. Z. Let M0 = E[g(X1, ..., Xn)], M1 = 
E[g(X1, ..., Xn)|F1],...,Mn = E[g(X1, ..., Xn)|Fn]. Observe that Mn is sim
ply g(X1, . . . , Xn), since X1, . . . , Xn are measurable wrt Fn. Thus, we by 
tower property 

E[Mn|Fn−1] = E[E[g(X1, ..., Xn)|Fn]|Fn−1] = Mn−1. 

Thus, Mi is a martingale. We have 

Mi+1 − Mi = E[E[g(X1, ..., Xn)|Fi+1] − E[g(X1, ..., Xn)|Fi]] 
= E[E[g(X1, ..., Xn) − E[g(X1, ..., Xn)|Fi]|Fi+1]]. 

Since Xi’s are independent, then Mi is a r.v. which on any vector x = (x1, . . . , xn) ∈ 
Ω takes value  

Mi = g(x1, ..., xn)dP(xi+1) · · · dP(xn), 
xi+1,...,xn 
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(and in particular only depends on the first i coordinates of x). Similarly
 

Mi+1 = g(x1, ..., xn)dP(xi+2) · · · dP(xn). 
xi+2,...,xn 

Thus 

|Mi+1 − Mi| = | (g(x1, ..., xn) − g(x1, ..., xn)dP(xi+1))dP(xi+1) · 
xi+2,...,xn xi+1 

≤ di+1 dP(xi+1) · · · dP(xn) 
xi+2,...,xn 

= di+1. 

This derivation represents a simple idea that Mi and Mi+1 only differ in ”averag
ing out” Xi+1 in Mi. Now defining M̂i = Mi − M0 = Mi − E[g(X1, . . . , Xn)], 
we have that M̂i is also a martingale with differences bounded by di, but with 
an additional property M0 = 0. Applying Theorem 1 we obtain the required 
result. 

Two examples 

We now consider two applications of the concentration inequalities developed 
in the previous sections. Our first example concerns convergence empirical dis
tributions to the true distributions of random variables. Specifically, suppose we 
have a distribution function F , and i.i.d. sequence X1, . . . , Xn with distribution 
F . From the sample X1, . . . , Xn we can build an empirical distribution function 

−1Fn(x) = n 1{Xi ≤ x}. Namely, Fn(x) is simply the frequency of 1≤i≤n 
observing values at most x in our sample. We should realize that Fn is a random 
function, since it depends on the sample X1, . . . , Xn. An important Theorem 
called Glivenko-Cantelli says that supx∈R |Fn(x)−F (x)| converges to zero and 
in expectation, the latter meaning of course that E[supx∈R |Fn(x) − F (x)|] → 
0. Proving this result is beyond our scope. However, applying the martin
gale concentration inequality we can bound the deviation of supx∈R |Fn(x) − 
F (x)| around its expectation. For convenience let Ln = Ln(X1, . . . , Xn) = 
supx∈R |Fn(x) − F (x)|, which is commonly called empirical risk in the statis
tics and machine learning fields. We need to bound P(|Ln − E[Ln]| > t). 
Observe that L satisfies property (4) with di = 1/n. Indeed changing one coor
dinate Xi to some X I changes Fn by at most 1/n, and thus the same applies to i 
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Ln. Applying Theorem 2 we obtain 

t2 
P(|Ln − E[Ln]| > t) ≤ 2 exp − 

2n(1/n)2 

t2n 
= 2 exp − . 

2 

Thus, we obtain a large deviations type bound on the difference Ln − E[Ln]. 
For our second example we turn to combinatorial optimization on random 

graphs. We will use the so-called Max-Cut problem as an example, though the 
approach works for many other optimization and constraint satisfaction prob
lems as well. Consider a simple undirected graph G = (V, E). V is the set of 
nodes, denoted by 1, 2, . . . , n. And E is the set of edges which we describe as 
a list of pairs (i1, j1), . . . , (i|E|, j|E|), where i1, . . . , i|E|, j1, . . . , j|E| are nodes. 
The graph is undirected, which means that the edges (i1, j1) and (j1, i1) are 
identical. We can also represent the graph as an n × n zero-one matrix A, where 
Ai,j = 1 if (i, j) ∈ E) and Ai,j = 0 otherwise. Then A is a symmetric matrix, 
namely AT = A, where AT is a transpose of A. A cut in this graph is a partition 
σ of nodes into two groups, encoded by function a function σ : V → {0, 1}. 
The value MC(σ) of the cut associated with σ is the number of edges be
tween the two groups. Formally, MC(σ) = |{(i, j) ∈ E : σ(i) = σ(j)}|. 
Clearly MC(σ) ≤ |E|. At the same time, a random assignment σ(i) = 0 with 
probability 1/2 and = 1 with probability 1/2 gives a cut with expected value 
MC(σ) ≥ (1/2)|E|. In fact there is a simple algorithm to construct such a 
cut explicitly. Now denote by MC(G) the maximum possible value of the cut: 
MC(G) = maxσ MC(σ). Thus 1/2 ≤ MC(G)/|E| ≤ 1. Further, suppose 
we delete an arbitrary edge from the graph G and obtain a new graph GI . Ob
serve that in this case MC(GI) ≥ MG(G) − 1 - the Max-Cut value either stays 
the same or goes down by at most one. Similarly, when we add an edge, the 
Max-Cut value increases by at most one. Putting this together, if we replace an 
arbitrary edge e ∈ E by a different edge eI and leave all the other edges intact, 
the value of the Max-Cut changes by at most one. 

Now suppose the graph G = G(n, dn) is a random Erd¨ enyi graph with os-R´
|E| = dn edges. Specifically, suppose we choose every edges E1, . . . , Ednp

nuniformly at random from the total set of edges, independently for these 2 
nd choices. Denote by MCn the value of the maximum cut MC(G(n, dn)) on 
this random graph. Since the graph is random, we have that MCn is a random 
variable. Furthermore, as we have just established, d/2 ≤ MCn/n ≤ d. One 
of the major open problems in the theory of random graphs is computing the 
scaling limit E[MCn]/n as n → ∞. However, we can easily obtain bounds 
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on the concentration of MCn around its expectation, using Azuma-Hoeffding 
inequality. For this goal, think of random edges E1, . . . , Edn as i.i.d. random p

nvariables in the space 1, 2, . . . , corresponding to the space of all possible 2 
edges on n nodes. Let g(E1, . . . , Edn) = MCn. Observe that indeed g is a 
function of dn i.i.d. random variables. By our observation, replacing one edge 
Ei by a different edge EI changes MCn by at most one. Thus we can apply i 
Theorem 2 which gives 

t2 
P (|MCn − E[MCn]| ≥ t) ≤ 2 exp − . 

2dn 

In particular, taking t = rn, where r > 0 is a constant, we obtain a large 
2 √ ndeviations type bound 2 exp(− r ). Taking instead t = r n, we obtain Gaus

2 
2d √ 

sian type bound 2 exp(− r ). Namely, MCn = E[MCn] + Θ( n). This is a 2d 
meaningful concentration around the mean since, as we have discussed above 
E[MCn] = Θ(n). 
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