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Concentration Inequalities and Applications  

Content.  

Talagrand’s inequality   
Let (Ωi, Fi, µi) be probability spaces (i = 1, ..., n). Let µ = µ1 ... µn be
 
product measure on X = Ω1 × ... × Ωn. Let x = (x1, ..., xn) ∈ X be a point in
 
this product space.
 
Hamming distance over X:
 

nn 
d(x, y) = |{i ≤ i ≤ n : xi  1{xi  = yi}| = =yi}

i=1 

α-weighted Hamming distance over X for a ∈ Rn :+

nn 
(x, y) = da ai1{xi= yi}

i=1 

2Also |a| = ai .
 
Control-distance from a set: for set A ⊆ X , and x ∈ X:
 

Dc 
A(x) = sup da(x, A) = inf{da(x, y) : y ∈ A}

|a|=1 

Theorem 1 (Talagrand). For every measurable non-emply set A and product-
measure µ,  

(Dc 
4 µ(A)

exp(
1 

A)
2)dµ ≤ 

1 

In particular, 
t21 

µ({DA
c ≥ t}) ≤ exp(− ) 

µ(A) 4 
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2 Application of Talagrand’s Inequality 

2.1 Concentration of Lipschitz functions. 

Let F : X → R for product space X = Ω1 × ...×Ωn such that for every x ∈ X , 
there exists a ≡ a(x) ∈ Rn with |a| = 1 so that for each y ∈ Y ,+ 

F (x) ≤ F (y) + da(x, y) (1) 

Why does every 1-Lipschitz function is essentially like (1)? 
Consider a 1-Lipschitz function f : X → R such that n 

|f(x) − f(y)| ≤ |xi − yi| (defined on Ωi) for all x, y ∈ X . 
i 

Let di = maxx,y∈Ω |xi − yi|. We assume di is bounded for all i. Then, n n 
|f(x) − f(y)| ≤ |xi − yi| ≤ 1{xi=yi}di 

i i 

Therefore, nf(x) − f(y) di di≤ 1{xi=yi} = da(x, y) with ai = 
d2 

i d2 d2 
i i i i i 

f(x)Thus F (x) = ||d||2 
where ||d||2 = d2 

i i . 
Let A = {F ≤ m}. By definition of Dc (x),A

Dc 
A(x) = sup da(x, A) ≥ da(x, y) 

a:|a|=1 

for a given a such that |a| = 1 and y ∈ A. Now for any y ∈ A, by definition 
F (y) ≤ m. Then, 

F (x) ≤ F (y) + da(x, y) ≤ m + Dc 
A(x) 

which implies {F ≥ m + r} ⊆ {Dc (x) ≥ r}. By Talagrand’s inequality, for A

any r ≥ 0, 

P({f ≥ m + r}) ≤ P({Dc 
A ≥ r}) ≤ 

1 
P(A) 

exp(− 
r2 

4 
) 

That is, 

P({F ≤ m})P({F ≥ m + r}) ≤ exp(− 
r2 

4 
) (2) 
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The median of F , mF is precisely such that 

1 1
P(F ≤ mF ) ≥ , P(F ≥ mF ) ≥ 

2 2 
Choose m = mF , m = mF − r in (2) to obtain: 

2 2r r
P(F ≥ mF + r) ≤ 2 exp(− ), P(F ≤ mF − r) ≤ 2 exp(− ) (3)

4 4 
Thus, 

2r
P(|F − mF | ≥ r) ≤ 4 exp(− )

4 

2.2 Further Application for Linear Functions 

Consider the independent random variables Y1, ..., Yn on some probability space 
(Ω, F , P). Let the constants (ui, vi), 1 ≤ i ≤ n such that 

ui ≤ Yi ≤ vi 
nSet Z = supt∈T < t, Y >≡ i=1 tiYi where T is some finite, countable or 

compact set of vectors in R+. We would be interested in situations where n 
2σ2 = sup ti (vi − ui)2 ≤ ∞ 

t∈T i 

We wish to apply (3) to this setting by choosing 

F (x) = sup < t, x > 
t∈T  nwhere x ∈ X and X = [ui, vi]. Given that T is compact, F (x) =<i=1

t ∗(x), x > for some t = t ∗(x) ∈ T , given x. 

nn n n 
F (x) = tixi ≤ tiyi + |ti||yi − xi|

i=1 i i n n 
≤ tiyi + |ti|(vi − ui)1(yi=xi) (let di = |ti|(vi − ui)) . 

i i 

≤ sup < ˜ 1(yit, y > +( 
n di 

= xi))||d||2 
˜ ||d||2t∈T i  n 

= F (y) + da(x, y)||d||2 (where let σ = ||d||2 = sup t2(vi − ui)2)i 
t∈T 

= F (y) + σda(x, y) (4) 
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By selection of f ≡ 1 F , (3) can be applied to f :σ 

2r
P(|f − mf | ≥ r) ≤ 4 exp(− )

4 
γLet r = , then P(|σf − σmf | ≥ γ) ≤ 4 exp(−

4
γ
σ

2

2 ). That is, σ 

γ2 
P(|F − mF | ≥ γ) ≤ 4 exp(− )

4σ2 

Now, 
∞ 

E[F ] = P(F ≥ s)ds (assume t ≡ 0 ∈ T ) 
0 
mF ∞ 

≤ 1ds + P(F ≥ mF + γ)dγ 
0 0 

∞ γ ≤ mF + 2 exp(− )dγ 
0 4σ2 

∞ γ2 
≤ mF + 2 exp(− )dγ 

0 4σ2 

√ ∞ 1 γ2 
= mF + 2 8πσ2 √ exp(− )dγ 

4σ2 
0 2π4σ2 

√ 
= mF + 2 2πσ 

Thus, √ 
|E[F ] − mF | ≤ 2 2πσ 

2.3 More Intricate Application 

Longest increasing subsequence:
 
Let X1, ..., Xn be points in [0, 1] chosen independently as a product measure.
 
Let Ln(X1, ..., Xn) be the length of longest increasing subsequence. (Note that
 
Ln(·) is not obviously Lipschitz). Talagrand’s inequality implies its concentra
tion.
 

Lemma 1. Let mn be median of Ln. Then for any r > 0, we have 

2r
P(Ln ≥ mn + r) ≤ 2 exp(− )

4(mn + r)

2r
P(Ln ≤ mn − r) ≤ 2 exp(− )

4mn 
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Proof. Let us start by establishing first inequality. Select A = {Ln ≤ mn}. 
Clearly, by definition P(A) ≥ 1 . For a x such that Ln(x) > mn, (i.e. x ∈ A),2 
consider any y ∈ A. Now, let set I ⊆ [n] be indices that give rise to longest 
increasing subsequence in x: i.e. say I = {i1, ..., ip} then xi1 < xi2 < ... < xip 

and p is the maximum length of any such increasing subsequence of x. Let 
J = {i ∈ I : xi = yi} for given y. Since I\J is an index set that corresponds 
to a increasing subsequence of y (since for i ∈ I\J ; xi = yi and I is index set 
of increasing subsequence of I); we have that (using fact that Ln(y) ≤ mn as 
y ∈ A) 

|I\J | ≤ mn 

That is, 

Ln(x) = |I| ≤ |I\J | + |J |n 
≤ Ln(y) + 1(xi = yi) 

i∈I 
n( n 1 ≤ Ln(y) + Ln(x)[ ( 1(i ∈ I)1(xi = yi)] 

i=1 Ln(x) 

Define	 ⎧ ⎨√ 1 , if i ∈ I 
Ln(x)ai(x) = ⎩0, o.w. 

Then |a| = 1 since |I| = Ln(x) by definition, and hence, (	 ( 
(x)DcLn(x) ≤ Ln(y) + Ln(x)da(x, y) ≤ mn + Ln A(x) 

Equivalently, 
Ln(x) − mnDc (A(x) ≥ 

Ln(x) 

For x such that Ln(x) ≥ mn + r, the RHS of ahove is minimal when Ln(x) = 
mn + r. Therefore, we have 

Ln(x) − mnDc 
A(x) ≥ ( 

Ln(x) 

For x such that Ln(x) ≥ mn + r, the RHS of above is minimal when Ln(x) = 
mn + r. Therefore, we have 

r Dc 
A(x) ≥ √ 

mn + r 
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That is
 

r 
Ln(x) ≥ mn + r ⇒ Dc √ for A = {Ln ≤ mnA(x) ≥ }

mn + r 

Putting these together, we have 

2r 1 r≥ mn + r) ≤ P(Dc √ ) ≤ exp(− )P(Ln A ≥ 
mn + r 2P (A) 4(mn + r)

But P(A) = P(Ln ≤ mn) ≥ 1 , we have that 2 

2r
P(Ln ≥ mn + r) ≤ 2 exp(− )

4(mn + r)

To establish lower bound, replace argument of the above with x such that Ln(x) ≥ 
s + u, A = {Ln ≤ s}. Then we obtain, 

u Dc √A(x) ≥ 
s + u 

Select s = mn − r, u = r. Then whenever x is such that Ln(x) ≥ s + u = mn 
and for A = {Ln ≤ s} = {Ln ≤ mn − r}. 

r Dc 
A(x) ≥ √ 

mn 

Thus, 

2r 1 r
P(Ln ≥ mn) ≤ P(DA

c ≥ ) ≤ exp(− ) 
mn P(Ln ≤ mn − r) 4mn 

which implies 
2r

P(Ln ≤ mn − r) ≤ 2 exp(− )
4mn 

This completes the proof. 

Proof of Talagrand’s Inequality 

Preparation. Given set A, x ∈ X: Dc (x) = sup
+ 
(da(x, A) = infy∈A da(x, y)).A a∈Rn 

Let 

UA(x) = {s ∈ {0, 1}n : ∃y ∈ A with s £ 1(x = y)} = {1(x = y) : y ∈ A} 

6 
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and let
 n n 
VA(x) = Convex-hull(UA(x)) = { αsS : αs = 1, αs ≥ 0 for all s ∈ UA(x)} 

s∈UA(x) 

Thus, 
x ∈ A ⇔ 1(x = x) = 0 ∈ UA(x) ⇔ 0 ∈ VA(x) 

It can therefore be checked that 

Lemma 2. 
Dc 

A(x) = d(0, VA(x)) ≡ inf |y|
y∈VA(x) 

Proof. (i) Dc (x) ≤ infy∈VA(x) |y|: since infy∈VA(x)(y) is achieved, let Z beA

such that |Z| = infy∈VA(x) |y|. Now for any a ∈ Rn 
+, |a| = 1: 

inf a · y ≤ a · z ≤ |a||z| = |z|
y∈VA(x) 

Since infy∈VA(x) a · y is linear programming, the minimum is achieved at an 
extreme point. That is, there exists s ∈ UA(x) such that 

inf a · y = inf a · s = inf da(x, y) for some y ∈ A. 
y∈VA(x) s∈UA(x) y∈A 

Since this is true for all a, it follows that, 

sup inf da(x, y) ≤ |z| ≡ inf |y|
y∈A|a|=1,a∈Rn y∈VA(x)

+ 

(ii) Dc (x) ≥ infy∈VA(x) |y|: Let z be the one achieving minimum in VA(x).A
2Then due to convexity of the objective (equivalently |y|2 = y = f(y))i 

and of the domain, we have for any y ∈ VA(x), vf(z)(y − z) ≥ 0 for any 
y ∈ VA(x). vf(z) = v(z · z) = 2z. Therefore the condition implies 

z 
(y − z)z ≥ 0 ⇔ y · z ≥ z · z = |z|2 ⇒ y · ≥ |z|

|z| 
zThus, for a = ∈ Rn 
|z| +, |a| = 1, we have that
 

inf a · y ≥ |z| 
y∈VA(x) 

But for any given a, infy∈VA(x) a · y = infs∈UA(x) a · s = da(x, A) as explained 
before. That is, supa:|a|=1 da(x, A) ≥ |z| = infy∈VA(x) |y|. This completes the 
proof. 
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Now we are ready to establish the inequality of Talagrand. The proof is via 
induction. Consider n = 1, given set A. Now,  

0, for x ∈ A 
Dc 

A(x) = sup inf da(x, y) = inf 1(x = y) =
a∈Rn ,|a|=1 y∈A y∈A 1, for x /∈ A 

+

Then, 

exp(D2/4)dP = exp(0)dP + exp(1/4)dP 
AcA 

= P (A) + e 1/4(1 − P (A)) 

= e 1/4 − (e 1/4 − 1)P (A) ≤ 
1 

(5)
P (A) 

Let f(x) = e1/4 −(e1/4 −1)x and g(x) = 1 . Because f(x) is a decreasing funcx 
tion of x, g(x) is a decreasing convex function. Thus, the result if established 
for n = 1. 
Induction hypothesis. Let it hold for some n. We shall assume for ease of the 
proof that Ω1 = Ω2 = ... = Ωn = ... = Ω. L 

Let A ⊂ Ωn+1. Let B be its projection on Ωn. Let A(ω), ω ∈ Ω be section 
of A along ω: if x ∈ Ωn , ω ∈ Ω then z = (x, ω) ∈ Ωn+1 . We observe the 
following: 
if s ∈ UA(ω)(x), then (s, 0) ∈ UA(z). Because, for some y ∈ Ωn such that 
(y, ω) ∈ A, s = 1(x = y). Therefore, (s, 0) = (1(x = y), 1(ω = ω)) = 1(z = 
(y, ω)) where (y, ω) ∈ A. Further, if t ∈ UB (x), then (t, 1) ∈ UA(z). This is 
because of the following: B = {x̃ ∈ Ωn : (x̃, ω̃) ∈ A for some ω̃ ∈ Ω}. Now 
if t ∈ UB (x), then ∃ y ∈ B such that t = 1(x = y). Now (t, 1) = (1(x = 
y), 1(ω̃ = ω)) = 1(z = (y, ω̃)) as long as there exists ω̃ so that (y, ω̃) ∈ A and 
ω̃ = ω. 
Given this, it follows that if ξ ∈ VA(ω)(x), ζ ∈ VB (x), and θ ∈ [0, 1], then 
((θξ + (1 − θ)ζ), 1 − θ) ∈ VA(z). Recall that 

Dc 
A(z)

2 = inf |y|2 ≤ (1 − θ)2 + |θξ + (1 − θ)ζ|2 
y∈VA(z) 

≤ (1 − θ)2 + θ|ξ|2 + (1 − θ)|ζ|2 (6) 

Therefore, 

Dc + θ inf |ξ|2 + (1 − θ) inf |ζ|2 
A(z)

2 ≤ (1 − θ)2 
ξ∈VA(ω)(x) ζ∈VB (x) 

= (1 − θ)2 + θDc
B (x)

2 
A(ω)(x)

2 + (1 − θ)Dc 
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By Hölder’s inequality, and the induction hypothesis, for ∀ω ∈ Ω, 

Dc (x,ω)2/4dP (x)A 

Ωn  
e   

(1 − θ)2 + θDc (x)2 + (1 − θ)Dc (x)A(ω) B
≤ exp dP (x) 

Ωn 4 

θDc (x)2  
(1 − θ)2 

A(ω) (1 − θ)Dc (x)2 
B≤ exp( ) exp( ) exp( ) dP (x)

4 Ωn 4 4   -    -
X Y 

(1 − θ)2 
= exp( )E[X · Y ]

4  
(1 − θ)2 

)E[Xp]1/pE[Y q]1/q
1 1  ≤ exp( , (for p = , q = : θ ∈ [0, 1])

4 θ 1 − θ   θ   1−θ(1 − θ)2 
= exp( ) exp(Dc (x)2/4)dP (x) B(x)

2/4)dP (x)A(ω) exp(Dc 
4 Ωn Ωn 

(1 − θ)2 1 1 ≤ exp( )( )θ( )1−θ by induction hypothesis. 
4 P (A(ω)) P (B)    −θ(1 − θ)2 1 P (A(ω)) 

= exp (7)
4 P (B) P (B)

(7) is true for any θ ∈ [0, 1], so for tightest upper bound, we shall optimize. 
(1−θ)2 

Claim: for any u ∈ [0, 1], infθ∈[0,1] exp( )u−θ ≤ 2 − u.4 
Therefore, (7) reduces to 

1 P (A(ω))≤ (2 − )
P (B) P (B) 

Therefore, 

Dc (x, ω)2 
exp( A )dP (x)dµ(ω) 

Ωn+1 4 
1 P(A(ω))≤ (2 − )dµ(ω)

P(B) P(B)Ω 
1 (P µ)(A)≤ (2 − )

P(B) P(B)  
1  ≤ , (since u(2 − u) ≤ 1 for all u ∈ R) (8)

(P µ)(A)

This completes the proof of Talagrand’s inequality. 
' ∗Claim: f(u) = u(2 − u) ⇒ f (u) = 2 − 2u ⇒ u = 1 ⇒ maxu f(u) = 

9 
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f(1) = 1. 

(1−θ)2 
Proof. To establish: infθ∈[0,1] exp( )u−θ ≤ 2 − u:4 

1−θ (1−θ)2 
if u ≥ e−1/2: θ = 1 + 2 log u ⇒ = − log u ⇒ = log2(u) and2 4  
−θ −θ log u − log u −2 log2  

u = e = e e u. Thus, 

(1 − θ)2 
exp( )u −θ = exp(log2 u − 2 log2 u − log u) = exp(− log u − log2 u) 

u 

We have that 

1 1 1 
1 ≥ u ≥ e −1/2 ⇒ 0 ≥ log u ≥ − ⇒ 0 ≤ − log u ≤ , 0 ≤ log2 u ≤ 

2 2 4 

and 

2f(x) = −x − x : x ∈ [−1/2, 0]; f 
' 
(x) = −1 − 2x ≤ 0 for x ∈ [−1/2, 0] 

Thus, 

1 1 1 1 − log u − log2 u ≤ − ≤ ⇒ exp(− log u − log2 u) ≤ 
2 4 4 4 

and for u ≥ e − 
2
1 

which implies that 2 − u ≥ exp(− log u − log2 u). 
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