MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Concentration Inequalities and Applications

Content.

1 Talagrand's inequality

Let $\left(\Omega_{i}, \mathcal{F}_{i}, \mu_{i}\right)$ be probability spaces $(i=1, \ldots, n)$. Let $\mu=\mu_{1} \otimes \ldots \otimes \mu_{n}$ be product measure on $X=\Omega_{1} \times \ldots \times \Omega_{n}$. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ be a point in this product space.
Hamming distance over X :

$$
d(x, y)=\left|\left\{i \leq i \leq n: x_{i} \neq y_{i}\right\}\right|=\sum_{i=1}^{n} \mathbf{1}_{\left\{x_{i} \neq y_{i}\right\}}
$$

α-weighted Hamming distance over X for $a \in \mathbb{R}_{+}^{n}$:

$$
d_{a}(x, y)=\sum_{i=1}^{n} a_{i} \mathbf{1}_{\left\{x_{i} \neq y_{i}\right\}}
$$

Also $|a|=\sqrt{\sum a_{i}^{2}}$.
Control-distance from a set: for set $A \subseteq X$, and $x \in X$:

$$
\mathcal{D}_{A}^{c}(x)=\sup _{|a|=1} d_{a}(x, A)=\inf \left\{d_{a}(x, y): y \in A\right\}
$$

Theorem 1 (Talagrand). For every measurable non-emply set A and productmeasure μ,

$$
\int \exp \left(\frac{1}{4}\left(\mathcal{D}_{A}^{c}\right)^{2}\right) d \mu \leq \frac{1}{\mu(A)}
$$

In particular,

$$
\mu\left(\left\{\mathcal{D}_{A}^{c} \geq t\right\}\right) \leq \frac{1}{\mu(A)} \exp \left(-\frac{t^{2}}{4}\right)
$$

2 Application of Talagrand's Inequality

2.1 Concentration of Lipschitz functions.

Let $F: X \rightarrow \mathbb{R}$ for product space $X=\Omega_{1} \times \ldots \times \Omega_{n}$ such that for every $x \in X$, there exists $a \equiv a(x) \in \mathbb{R}_{+}^{n}$ with $|a|=1$ so that for each $y \in Y$,

$$
\begin{equation*}
F(x) \leq F(y)+d_{a}(x, y) \tag{1}
\end{equation*}
$$

Why does every 1-Lipschitz function is essentially like (1)?
Consider a 1-Lipschitz function $f: X \rightarrow \mathbb{R}$ such that

$$
|f(x)-f(y)| \leq \sum_{i}\left|x_{i}-y_{i}\right|\left(\text { defined on } \Omega_{i}\right) \text { for all } x, y \in X
$$

Let $d_{i}=\max _{x, y \in \Omega}\left|x_{i}-y_{i}\right|$. We assume d_{i} is bounded for all i. Then,

$$
|f(x)-f(y)| \leq \sum_{i}\left|x_{i}-y_{i}\right| \leq \sum_{i} \mathbf{1}_{\left\{x_{i} \neq y_{i}\right\}} d_{i}
$$

Therefore,

$$
\frac{f(x)-f(y)}{\sqrt{\sum_{i} d_{i}^{2}}} \leq \sum_{i} \frac{d_{i}}{\sqrt{\sum d_{i}^{2}}} \mathbf{1}_{\left\{x_{i} \neq y_{i}\right\}}=d_{a}(x, y) \text { with } a_{i}=\frac{d_{i}}{\sqrt{\sum_{i} d_{i}^{2}}}
$$

Thus $F(x)=\frac{f(x)}{\|d\|_{2}}$ where $\|d\|_{2}=\sqrt{\sum_{i} d_{i}^{2}}$.
Let $A=\{F \leq m\}$. By definition of $\mathcal{D}_{A}^{c}(x)$,

$$
\mathcal{D}_{A}^{c}(x)=\sup _{a:|a|=1} d_{a}(x, A) \geq d_{a}(x, y)
$$

for a given a such that $|a|=1$ and $y \in A$. Now for any $y \in A$, by definition $F(y) \leq m$. Then,

$$
F(x) \leq F(y)+d_{a}(x, y) \leq m+\mathcal{D}_{A}^{c}(x)
$$

which implies $\{F \geq m+r\} \subseteq\left\{\mathcal{D}_{A}^{c}(x) \geq r\right\}$. By Talagrand's inequality, for any $r \geq 0$,

$$
\mathbb{P}(\{f \geq m+r\}) \leq \mathbb{P}\left(\left\{\mathcal{D}_{A}^{c} \geq r\right\}\right) \leq \frac{1}{\mathbb{P}(A)} \exp \left(-\frac{r^{2}}{4}\right)
$$

That is,

$$
\begin{equation*}
\mathbb{P}(\{F \leq m\}) \mathbb{P}(\{F \geq m+r\}) \leq \exp \left(-\frac{r^{2}}{4}\right) \tag{2}
\end{equation*}
$$

The median of F, m_{F} is precisely such that

$$
\mathbb{P}\left(F \leq m_{F}\right) \geq \frac{1}{2}, \mathbb{P}\left(F \geq m_{F}\right) \geq \frac{1}{2}
$$

Choose $m=m_{F}, m=m_{F}-r$ in (2) to obtain:

$$
\begin{equation*}
\mathbb{P}\left(F \geq m_{F}+r\right) \leq 2 \exp \left(-\frac{r^{2}}{4}\right), \mathbb{P}\left(F \leq m_{F}-r\right) \leq 2 \exp \left(-\frac{r^{2}}{4}\right) \tag{3}
\end{equation*}
$$

Thus,

$$
\mathbb{P}\left(\left|F-m_{F}\right| \geq r\right) \leq 4 \exp \left(-\frac{r^{2}}{4}\right)
$$

2.2 Further Application for Linear Functions

Consider the independent random variables Y_{1}, \ldots, Y_{n} on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let the constants $\left(u_{i}, v_{i}\right), 1 \leq i \leq n$ such that

$$
u_{i} \leq Y_{i} \leq v_{i}
$$

Set $Z=\sup _{t \in T}<t, Y>\equiv \sum_{i=1}^{n} t_{i} Y_{i}$ where T is some finite, countable or compact set of vectors in \mathbb{R}_{+}. We would be interested in situations where

$$
\sigma^{2}=\sup _{t \in T} \sum_{i} t_{i}^{2}\left(v_{i}-u_{i}\right)^{2} \leq \infty
$$

We wish to apply (3) to this setting by choosing

$$
F(x)=\sup _{t \in T}\langle t, x\rangle
$$

where $x \in X$ and $X=\prod_{i=1}^{n}\left[u_{i}, v_{i}\right]$. Given that T is compact, $F(x)=<$ $t^{*}(x), x>$ for some $t=t^{*}(x) \in T$, given x.

$$
\begin{align*}
F(x)=\sum_{i=1}^{n} t_{i} x_{i} & \leq \sum_{i} t_{i} y_{i}+\sum_{i}\left|t_{i}\right|\left|y_{i}-x_{i}\right| \\
& \leq \sum_{i} t_{i} y_{i}+\sum_{i}\left|t_{i}\right|\left(v_{i}-u_{i}\right) \mathbf{1}_{\left(y_{i} \neq x_{i}\right)}\left(\text { let } d_{i}=\left|t_{i}\right|\left(v_{i}-u_{i}\right)\right) . \\
& \leq \sup _{\tilde{t} \in T}<\tilde{t}, y>+\left(\sum_{i} \frac{d_{i}}{\|d\|_{2}} \mathbf{1}\left(y_{i} \neq x_{i}\right)\right)\|d\|_{2} \\
& =F(y)+d_{a}(x, y)\|d\|_{2}\left(\text { where let } \sigma=\|d\|_{2}=\sqrt{\sup _{t \in T} \sum t_{i}^{2}\left(v_{i}-u_{i}\right)^{2}}\right) \\
& =F(y)+\sigma d_{a}(x, y) \tag{4}
\end{align*}
$$

By selection of $f \equiv \frac{1}{\sigma} F$, (3) can be applied to f :

$$
\mathbb{P}\left(\left|f-m_{f}\right| \geq r\right) \leq 4 \exp \left(-\frac{r^{2}}{4}\right)
$$

Let $r=\frac{\gamma}{\sigma}$, then $\mathbb{P}\left(\left|\sigma f-\sigma m_{f}\right| \geq \gamma\right) \leq 4 \exp \left(-\frac{\gamma^{2}}{4 \sigma^{2}}\right)$. That is,

$$
\mathbb{P}\left(\left|F-m_{F}\right| \geq \gamma\right) \leq 4 \exp \left(-\frac{\gamma^{2}}{4 \sigma^{2}}\right)
$$

Now,

$$
\begin{aligned}
\mathbb{E}[F] & \left.=\int_{0}^{\infty} \mathbb{P}(F \geq s) d s \text { (assume } t \equiv 0 \in T\right) \\
& \leq \int_{0}^{m_{F}} 1 d s+\int_{0}^{\infty} \mathbb{P}\left(F \geq m_{F}+\gamma\right) d \gamma \\
& \leq m_{F}+\int_{0}^{\infty} 2 \exp \left(-\frac{\gamma}{4 \sigma^{2}}\right) d \gamma \\
& \leq m_{F}+\int_{0}^{\infty} 2 \exp \left(-\frac{\gamma^{2}}{4 \sigma^{2}}\right) d \gamma \\
& =m_{F}+2 \sqrt{8 \pi \sigma^{2}} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi 4 \sigma^{2}}} \exp \left(-\frac{\gamma^{2}}{4 \sigma^{2}}\right) d \gamma \\
& =m_{F}+2 \sqrt{2 \pi} \sigma
\end{aligned}
$$

Thus,

$$
\left|\mathbb{E}[F]-m_{F}\right| \leq 2 \sqrt{2 \pi} \sigma
$$

2.3 More Intricate Application

Longest increasing subsequence:
Let X_{1}, \ldots, X_{n} be points in $[0,1]$ chosen independently as a product measure. Let $L_{n}\left(X_{1}, \ldots, X_{n}\right)$ be the length of longest increasing subsequence. (Note that $L_{n}(\cdot)$ is not obviously Lipschitz). Talagrand's inequality implies its concentration.

Lemma 1. Let m_{n} be median of L_{n}. Then for any $r>0$, we have

$$
\begin{gathered}
\mathbb{P}\left(L_{n} \geq m_{n}+r\right) \leq 2 \exp \left(-\frac{r^{2}}{4\left(m_{n}+r\right)}\right) \\
\mathbb{P}\left(L_{n} \leq m_{n}-r\right) \leq 2 \exp \left(-\frac{r^{2}}{4 m_{n}}\right)
\end{gathered}
$$

Proof. Let us start by establishing first inequality. Select $A=\left\{L_{n} \leq m_{n}\right\}$. Clearly, by definition $\mathbb{P}(A) \geq \frac{1}{2}$. For a x such that $L_{n}(x)>m_{n}$, (i.e. $x \in A$), consider any $y \in A$. Now, let set $I \subseteq[n]$ be indices that give rise to longest increasing subsequence in x : i.e. say $I=\left\{i_{1}, \ldots, i_{p}\right\}$ then $x_{i_{1}}<x_{i_{2}}<\ldots<x_{i_{p}}$ and p is the maximum length of any such increasing subsequence of x. Let $J=\left\{i \in I: x_{i} \neq y_{i}\right\}$ for given y. Since $I \backslash J$ is an index set that corresponds to a increasing subsequence of y (since for $i \in I \backslash J ; x_{i}=y_{i}$ and I is index set of increasing subsequence of I); we have that (using fact that $L_{n}(y) \leq m_{n}$ as $y \in A$)

$$
|I \backslash J| \leq m_{n}
$$

That is,

$$
\begin{aligned}
L_{n}(x)=|I| & \leq|I \backslash J|+|J| \\
& \leq L_{n}(y)+\sum_{i \in I} \mathbf{1}\left(x_{i} \neq y_{i}\right) \\
& \leq L_{n}(y)+\sqrt{L_{n}(x)}\left[\sum_{i=1}^{n} \frac{1}{\sqrt{L_{n}(x)}} \mathbf{1}(i \in I) \mathbf{1}\left(x_{i} \neq y_{i}\right)\right]
\end{aligned}
$$

Define

$$
a_{i}(x)= \begin{cases}\frac{1}{\sqrt{L_{n}(x)}}, & \text { if } i \in I \\ 0, & \text { o.w. }\end{cases}
$$

Then $|a|=1$ since $|I|=L_{n}(x)$ by definition, and hence,

$$
L_{n}(x) \leq L_{n}(y)+\sqrt{L_{n}(x)} d_{a}(x, y) \leq m_{n}+\sqrt{L_{n}(x)} \mathcal{D}_{A}^{c}(x)
$$

Equivalently,

$$
\mathcal{D}_{A}^{c}(x) \geq \frac{L_{n}(x)-m_{n}}{\sqrt{L_{n}(x)}}
$$

For x such that $L_{n}(x) \geq m_{n}+r$, the RHS of ahove is minimal when $L_{n}(x)=$ $m_{n}+r$. Therefore, we have

$$
\mathcal{D}_{A}^{c}(x) \geq \frac{L_{n}(x)-m_{n}}{\sqrt{L_{n}(x)}}
$$

For x such that $L_{n}(x) \geq m_{n}+r$, the RHS of above is minimal when $L_{n}(x)=$ $m_{n}+r$. Therefore, we have

$$
\mathcal{D}_{A}^{c}(x) \geq \frac{r}{\sqrt{m_{n}+r}}
$$

That is

$$
L_{n}(x) \geq m_{n}+r \Rightarrow \mathcal{D}_{A}^{c}(x) \geq \frac{r}{\sqrt{m_{n}+r}} \text { for } A=\left\{L_{n} \leq m_{n}\right\}
$$

Putting these together, we have

$$
\mathbb{P}\left(L_{n} \geq m_{n}+r\right) \leq \mathbb{P}\left(\mathcal{D}_{A}^{c} \geq \frac{r}{\sqrt{m_{n}+r}}\right) \leq \frac{1}{2 P(A)} \exp \left(-\frac{r^{2}}{4\left(m_{n}+r\right)}\right)
$$

But $\mathbb{P}(A)=\mathbb{P}\left(L_{n} \leq m_{n}\right) \geq \frac{1}{2}$, we have that

$$
\mathbb{P}\left(L_{n} \geq m_{n}+r\right) \leq 2 \exp \left(-\frac{r^{2}}{4\left(m_{n}+r\right)}\right)
$$

To establish lower bound, replace argument of the above with x such that $L_{n}(x) \geq$ $s+u, A=\left\{L_{n} \leq s\right\}$. Then we obtain,

$$
\mathcal{D}_{A}^{c}(x) \geq \frac{u}{\sqrt{s+u}}
$$

Select $s=m_{n}-r, u=r$. Then whenever x is such that $L_{n}(x) \geq s+u=m_{n}$ and for $A=\left\{L_{n} \leq s\right\}=\left\{L_{n} \leq m_{n}-r\right\}$.

$$
\mathcal{D}_{A}^{c}(x) \geq \frac{r}{\sqrt{m_{n}}}
$$

Thus,

$$
\mathbb{P}\left(L_{n} \geq m_{n}\right) \leq \mathbb{P}\left(\mathcal{D}_{A}^{c} \geq \frac{r}{m_{n}}\right) \leq \frac{1}{\mathbb{P}\left(L_{n} \leq m_{n}-r\right)} \exp \left(-\frac{r^{2}}{4 m_{n}}\right)
$$

which implies

$$
\mathbb{P}\left(L_{n} \leq m_{n}-r\right) \leq 2 \exp \left(-\frac{r^{2}}{4 m_{n}}\right)
$$

This completes the proof.

3 Proof of Talagrand's Inequality

Preparation. Given set $A, x \in X: \mathcal{D}_{A}^{c}(x)=\sup _{a \in \mathcal{R}_{+}^{n}}\left(d_{a}(x, A)=\inf _{y \in A} d_{a}(x, y)\right)$. Let

$$
U_{A}(x)=\left\{s \in\{0,1\}^{n}: \exists y \in A \text { with } s \triangleq \mathbf{1}(x \neq y)\right\}=\{\mathbf{1}(x \neq y): y \in A\}
$$

and let
$V_{A}(x)=$ Convex-hull $\left(U_{A}(x)\right)=\left\{\sum_{s \in U_{A}(x)} \alpha_{s} S: \sum \alpha_{s}=1, \alpha_{s} \geq 0\right.$ for all $\left.s \in U_{A}(x)\right\}$
Thus,

$$
x \in A \Leftrightarrow \mathbf{1}(x \neq x)=0 \in U_{A}(x) \Leftrightarrow 0 \in V_{A}(x)
$$

It can therefore be checked that

Lemma 2.

$$
\mathcal{D}_{A}^{c}(x)=d\left(0, V_{A}(x)\right) \equiv \inf _{y \in V_{A}(x)}|y|
$$

Proof. (i) $\mathcal{D}_{A}^{c}(x) \leq \inf _{y \in V_{A}(x)}|y|:$ since $\inf _{y \in V_{A}(x)}(y)$ is achieved, let Z be such that $|Z|=\inf _{y \in V_{A}(x)}|y|$. Now for any $a \in \mathbb{R}_{+}^{n},|a|=1$:

$$
\inf _{y \in V_{A}(x)} a \cdot y \leq a \cdot z \leq|a||z|=|z|
$$

Since $\inf _{y \in V_{A}(x)} a \cdot y$ is linear programming, the minimum is achieved at an extreme point. That is, there exists $s \in U_{A}(x)$ such that

$$
\inf _{y \in V_{A}(x)} a \cdot y=\inf _{s \in U_{A}(x)} a \cdot s=\inf _{y \in A} d_{a}(x, y) \text { for some } y \in A .
$$

Since this is true for all a, it follows that,

$$
\sup _{|a|=1, a \in \mathbb{R}_{+}^{n}} \inf _{y \in A} d_{a}(x, y) \leq|z| \equiv \inf _{y \in V_{A}(x)}|y|
$$

(ii) $\mathcal{D}_{A}^{c}(x) \geq \inf _{y \in V_{A}(x)}|y|$: Let z be the one achieving minimum in $V_{A}(x)$. Then due to convexity of the objective (equivalently $|y|^{2}=\sum y_{i}^{2}=f(y)$) and of the domain, we have for any $y \in V_{A}(x), \nabla f(z)(y-z) \geq 0$ for any $y \in V_{A}(x) . \nabla f(z)=\nabla(z \cdot z)=2 z$. Therefore the condition implies

$$
(y-z) z \geq 0 \Leftrightarrow y \cdot z \geq z \cdot z=|z|^{2} \Rightarrow y \cdot \frac{z}{|z|} \geq|z|
$$

Thus, for $a=\frac{z}{|z|} \in \mathbb{R}_{+}^{n},|a|=1$, we have that

$$
\inf _{y \in V_{A}(x)} a \cdot y \geq|z|
$$

But for any given $a, \inf _{y \in V_{A}(x)} a \cdot y=\inf _{s \in U_{A}(x)} a \cdot s=d_{a}(x, A)$ as explained before. That is, $\sup _{a:|a|=1} d_{a}(x, A) \geq|z|=\inf _{y \in V_{A}(x)}|y|$. This completes the proof.

Now we are ready to establish the inequality of Talagrand. The proof is via induction. Consider $n=1$, given set A. Now,

$$
\mathcal{D}_{A}^{c}(x)=\sup _{a \in \mathbb{R}_{+}^{n},|a|=1} \inf _{y \in A} d_{a}(x, y)=\inf _{y \in A} \mathbf{1}(x \neq y)= \begin{cases}0, & \text { for } x \in A \\ 1, & \text { for } x \notin A\end{cases}
$$

Then,

$$
\begin{align*}
\int \exp \left(D^{2} / 4\right) d P & =\int_{A} \exp (0) d P+\int_{A^{c}} \exp (1 / 4) d P \\
& =P(A)+e^{1 / 4}(1-P(A)) \\
& =e^{1 / 4}-\left(e^{1 / 4}-1\right) P(A) \leq \frac{1}{P(A)} \tag{5}
\end{align*}
$$

Let $f(x)=e^{1 / 4}-\left(e^{1 / 4}-1\right) x$ and $g(x)=\frac{1}{x}$. Because $f(x)$ is a decreasing function of $x, g(x)$ is a decreasing convex function. Thus, the result if established for $n=1$.
Induction hypothesis. Let it hold for some n. We shall assume for ease of the proof that $\Omega_{1}=\Omega_{2}=\ldots=\Omega_{n}=\ldots=\Omega$. L

Let $A \subset \Omega^{n+1}$. Let B be its projection on Ω^{n}. Let $A(\omega), \omega \in \Omega$ be section of A along ω : if $x \in \Omega^{n}, \omega \in \Omega$ then $z=(x, \omega) \in \Omega^{n+1}$. We observe the following:
if $s \in U_{A(\omega)}(x)$, then $(s, 0) \in U_{A}(z)$. Because, for some $y \in \Omega^{n}$ such that $(y, \omega) \in A, s=\mathbf{1}(x \neq y)$. Therefore, $(s, 0)=(\mathbf{1}(x \neq y), \mathbf{1}(\omega \neq \omega))=\mathbf{1}(z \neq$ $(y, \omega))$ where $(y, \omega) \in A$. Further, if $t \in U_{B}(x)$, then $(t, 1) \in U_{A}(z)$. This is because of the following: $B=\left\{\tilde{x} \in \Omega^{n}:(\tilde{x}, \tilde{\omega}) \in A\right.$ for some $\left.\tilde{\omega} \in \Omega\right\}$. Now if $t \in U_{B}(x)$, then $\exists y \in B$ such that $t=\mathbf{1}(x \neq y)$. Now $(t, 1)=(\mathbf{1}(x \neq$ $y), \mathbf{1}(\tilde{\omega} \neq \omega))=\mathbf{1}(z \neq(y, \tilde{\omega}))$ as long as there exists $\tilde{\omega}$ so that $(y, \tilde{\omega}) \in A$ and $\tilde{\omega} \neq \omega$.
Given this, it follows that if $\xi \in V_{A(\omega)}(x), \zeta \in V_{B}(x)$, and $\theta \in[0,1]$, then $((\theta \xi+(1-\theta) \zeta), 1-\theta) \in V_{A}(z)$. Recall that

$$
\begin{align*}
\mathcal{D}_{A}^{c}(z)^{2} & =\inf _{y \in V_{A}(z)}|y|^{2} \leq(1-\theta)^{2}+|\theta \xi+(1-\theta) \zeta|^{2} \\
& \leq(1-\theta)^{2}+\theta|\xi|^{2}+(1-\theta)|\zeta|^{2} \tag{6}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\mathcal{D}_{A}^{c}(z)^{2} & \leq(1-\theta)^{2}+\theta \inf _{\xi \in V_{A(\omega)}(x)}|\xi|^{2}+(1-\theta) \inf _{\zeta \in V_{B}(x)}|\zeta|^{2} \\
& =(1-\theta)^{2}+\theta \mathcal{D}_{A(\omega)}^{c}(x)^{2}+(1-\theta) \mathcal{D}_{B}^{c}(x)^{2}
\end{aligned}
$$

By Hölder's inequality, and the induction hypothesis, for $\forall \omega \in \Omega$,

$$
\begin{align*}
& \int_{\Omega^{n}} e^{\mathcal{D}_{A}^{c}(x, \omega)^{2} / 4} d P(x) \\
& \leq \int_{\Omega^{n}} \exp \left(\frac{(1-\theta)^{2}+\theta \mathcal{D}_{A(\omega)}^{c}(x)^{2}+(1-\theta) \mathcal{D}_{B}^{c}(x)}{4}\right) d P(x) \\
& \leq \exp \left(\frac{(1-\theta)^{2}}{4}\right) \int_{\Omega^{n}} \underbrace{\exp \left(\frac{\theta \mathcal{D}_{A(\omega)}^{c}\left(x^{2}\right.}{4}\right)}_{X} \underbrace{\exp \left(\frac{(1-\theta) \mathcal{D}_{B}^{c}(x)^{2}}{4}\right)}_{Y} d P(x) \\
& =\exp \left(\frac{(1-\theta)^{2}}{4}\right) \mathbb{E}[X \cdot Y] \\
& \leq \exp \left(\frac{(1-\theta)^{2}}{4}\right) \mathbb{E}\left[X^{p}\right]^{1 / p} \mathbb{E}\left[Y^{q}\right]^{1 / q},\left(\text { for } p=\frac{1}{\theta}, q=\frac{1}{1-\theta}: \theta \in[0,1]\right) \\
& =\exp \left(\frac{(1-\theta)^{2}}{4}\right)\left(\int_{\Omega^{n}} \exp \left(\mathcal{D}_{A(\omega)}^{c}(x)^{2} / 4\right) d P(x)\right)^{\theta}\left(\int_{\Omega^{n}} \exp \left(\mathcal{D}_{B}^{c}(x)^{2} / 4\right) d P(x)\right)^{1-\theta} \\
& \leq \exp \left(\frac{(1-\theta)^{2}}{4}\right)\left(\frac{1}{P(A(\omega))}\right)^{\theta}\left(\frac{1}{P(B)}\right)^{1-\theta} \text { by induction hypothesis. } \\
& =\exp \left(\frac{(1-\theta)^{2}}{4}\right) \frac{1}{P(B)}\left(\frac{P(A(\omega))}{P(B)}\right)^{-\theta} \tag{7}
\end{align*}
$$

(7) is true for any $\theta \in[0,1]$, so for tightest upper bound, we shall optimize.

Claim: for any $u \in[0,1], \inf _{\theta \in[0,1]} \exp \left(\frac{(1-\theta)^{2}}{4}\right) u^{-\theta} \leq 2-u$.
Therefore, (7) reduces to

$$
\leq \frac{1}{P(B)}\left(2-\frac{P(A(\omega))}{P(B)}\right)
$$

Therefore,

$$
\begin{align*}
& \int_{\Omega^{n+1}} \exp \left(\frac{\mathcal{D}_{A}^{c}(x, \omega)^{2}}{4}\right) d P(x) d \mu(\omega) \\
& \leq \frac{1}{\mathbb{P}(B)} \int_{\Omega}\left(2-\frac{\mathbb{P}(A(\omega))}{\mathbb{P}(B)}\right) d \mu(\omega) \\
& \leq \frac{1}{\mathbb{P}(B)}\left(2-\frac{(P \bigotimes \mu)(A)}{\mathbb{P}(B)}\right) \\
& \left.\leq \frac{1}{(\mathbb{P} \otimes \mu)(A)}, \text { since } u(2-u) \leq 1 \text { for all } u \in \mathbb{R}\right) \tag{8}
\end{align*}
$$

This completes the proof of Talagrand's inequality.
Claim: $f(u)=u(2-u) \Rightarrow f^{\prime}(u)=2-2 u \Rightarrow u^{*}=1 \Rightarrow \max _{u} f(u)=$
$f(1)=1$.

Proof. To establish: $\inf _{\theta \in[0,1]} \exp \left(\frac{(1-\theta)^{2}}{4}\right) u^{-\theta} \leq 2-u$:
if $u \geq e^{-1 / 2}: \theta=1+2 \log u \Rightarrow \frac{1-\theta}{2}=-\log u \Rightarrow \frac{(1-\theta)^{2}}{4}=\log ^{2}(u)$ and $u^{-\theta}=e^{-\theta \log u}=e^{-\log u} e^{-2 \log ^{2} u}$. Thus,
$\exp \left(\frac{(1-\theta)^{2}}{u}\right) u^{-\theta}=\exp \left(\log ^{2} u-2 \log ^{2} u-\log u\right)=\exp \left(-\log u-\log ^{2} u\right)$
We have that

$$
1 \geq u \geq e^{-1 / 2} \Rightarrow 0 \geq \log u \geq-\frac{1}{2} \Rightarrow 0 \leq-\log u \leq \frac{1}{2}, 0 \leq \log ^{2} u \leq \frac{1}{4}
$$

and

$$
f(x)=-x-x^{2}: x \in[-1 / 2,0] ; f^{\prime}(x)=-1-2 x \leq 0 \text { for } x \in[-1 / 2,0]
$$

Thus,

$$
-\log u-\log ^{2} u \leq \frac{1}{2}-\frac{1}{4} \leq \frac{1}{4} \Rightarrow \exp \left(-\log u-\log ^{2} u\right) \leq \frac{1}{4}
$$

and for $u \geq e^{-\frac{1}{2}}$ which implies that $2-u \geq \exp \left(-\log u-\log ^{2} u\right)$.

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

