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Introduction to Ito calculus.  

Content. 

1. Spaces L2, M2, M2,c. 

2. Quadratic variation property of continuous martingales. 

Doob-Kolmogorov inequality. Continuous time version 

Let us establish the following continuous time version of the Doob-Kolmogorov 
inequality. We use RCLL as abbreviation for right-continuous function with left 
limits. 

Proposition 1. Suppose Xt ≥ 0 is a RCLL sub-martingale. Then for every 
T, x ≥ 0 

E[X2 ]TP( sup Xt ≥ x) ≤ .
2x0≤t≤T 

Proof. Consider any sequence of partitions Πn = {0 = tn < tn < . . . < tn = 0 1 Nn 
T } such that Δ(Πn) = maxj |tn − tn| → 0. Additionally, suppose that the j+1 j 
sequence Πn is nested, in the sense the for every n1 ≤ n2, every point in Πn1 is 
also a point in Πn2 . Let Xn = Xtn where j = max{i : ti ≤ t}. Then Xn is a t tj 
sub-martingale adopted to the same filtration (notice that this would not be the 
case if we instead chose right ends of the intervals). By the discrete version of 
the D-K inequality (see previous lectures), we have 

E[X2 ]TP(max Xt
n 
j ≥ x) = P(sup Xn ≥ x) ≤ 

2 .t
j≤Nn xt≤T 

By RCLL, we have supt≤T X
n → supt≤T Xt a.s. Indeed, fix E > 0 andt 

find t0 = t0(ω) such that Xt0 ≥ supt≤T Xt − E. Find n large enough and 
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j = j(n) such that tj(n)−1 ≤ t0 ≤ tnj(n). Then tj(n) → t0 as n → ∞. 
By right-continuity of X , Xtj(n) → Xt0 . This implies that for sufficiently 
large n, supt≤T Xt

n ≥ Xtj(n) ≥ Xt0 − 2E, and the a.s. convergence is es
tablished. On the other hand, since the sequence Πn is nested, then the se
quence supt≤T X

n is non-decreasing. By continuity of probabilities, we obtain t 
P(supt≤T X

n ≥ x) → P(supt≤T Xt ≥ x).t 

Stochastic processes and martingales 

Consider a probability space (Ω, F , P) and a filtration (Ft, t ∈ R+). We assume 
that all zero-measure events are ”added” to F0. Namely, for every A ⊂ Ω, such 
that for some A' ∈ F with P(A') = 0 we have A ⊂ A' ∈ F , then A also belongs 
to F0. A filtration is called right-continuous if Ft = ∩E>0Ft+E. From now 
on we consider exclusively right-continuous filtrations. A stochastic process 
Xt adopted to this filtration is a measurable function X : Ω × [0, ∞) → R, 
such that Xt ∈ Ft for every t. Denote by L2 the space of processes s.t. the T  TRiemann integral Xt(ω)dt exists a.s. and moreover E[ X2dt] < ∞ fort0 0 
every T > 0. This implies P(ω :

 T |Xt(ω)|dt < ∞, ∀T ) = 1.0 
Let M2 consist of square integrable right-continuous martingales with left 

limits (RCLL). Namely E[X2] < ∞ for every X ∈ M2 and t ≥ 0. Finallyt 
M2,c ⊂ M2 is a further subset of processes consisting of a.s. continuous 
processes. For each T > 0 we define a norm on M2 by IXI = IXIT = 
(E[X2 ])1/2. Applying sub-martingale property of X2 we have E[X2 ] ≤ E[X2 ]T t T1 T2 
for every T1 ≤ T2. 

A stochastic process Yt is called a version of Xt if for every t ∈ R+, P(Xt = 
Yt) = 1. Notice, this is weaker than saying P(Xt = Yt, ∀t) = 1. 

Proposition 2. Suppose (Xt, Ft) is a submartingale and t → E[Xt] is a con
tinuous function. Then there exists a version Yt of Xt which is RCLL. 

We skip the proof of this fact. 

Proposition 3. M2 is a complete metric space and (w.r.t. I · I) M2,c is a closed 
subspace of M2. 

Proof. We need to show that if X(n) ∈ M2 is Cauchy, then there exists X ∈ 
M2 with IX(n) − XI → 0. 

Assume X(n) is Cauchy. Fix t ≤ T Since X(n) − X(m) is a martingale 
(n) (m) (n) (m) (n)as well, E[(X − Xt )2] ≤ E[(XT − X )2]. Thus Xt is Cauchy as t T 

well. We know that the space L2 of random variables with finite second moment 
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is closed. Thus for each t there exists a r.v. Xt s.t. E[(X(n) − Xt)
2] → 0 ast 

n → ∞. We claim that since X(n) ∈ Ft and X(n) is RCLL, then (Xt, t ≥ 0) ist 
adopted to Ft as well (exercise). Let us show it is a martingale. First E[|Xt|] < 
∞ since in fact E[X2] < ∞. Fix s < t and A ∈ Fs. Since each X(n) is a t t 

(n) (n)martingale, then E[X 1(A)] = E[Xs 1(A)]. We have t 

− X(n)E[Xt1(A)] − E[Xs1(A)] = E[(Xt − X(n)
)1(A)] − E[(Xs )1(A)]t s 

(n) (n) (n)We have E[|Xt − X |1(A)] ≤ E[|Xt − X |] ≤ (E[(Xt − X )2])1/2 → 0t t t 
as n → ∞. A similar statement holds for s. Since the left-hand side does not 
depend on n, we conclude E[Xt1(A)] = E[Xs1(A)] implying E[Xt|Fs] = Xs, 
namely Xt is a martingale. Since E[Xt] = E[X0] is constant and therefore 
continuous as a function of t, then there exists version of Xt which is RCLL. 
For simplicity we denote it by Xt as well. We constructed a process Xt ∈ M2 

s.t. E[(X(n) − Xt)
2] → 0 for all t ≤ T . This proves completeness of M2.t 

Now we deal with closeness of M2,c. Since X(n) − Xt is a martingale, t 
(n) (n)

(X − Xt)
2 is a submartingale. Since Xt ∈ M2, then (X − Xt)

2 is RCLL. t t 
Then submartingale inequality applies. Fix E > 0. By submartingale inequality 
we have 

1(n) (n)P(sup |X − Xt| > E) ≤ E[(X − XT )
2] → 0,t T 

t≤T E2 

as n → ∞. Then we can choose subsequence nk such that 

1(nk)P(sup |X − Xt| > 1/k) ≤ .t 
t≤T 2k 

(nk)Since 1/2k is summable, by Borel-Cantelli Lemma we have supt≤T |X −t 
(nk)Xt| → 0 almost surely: P({ω ∈ Ω : supt≤T |X (ω) − Xt(ω)| → 0}) = t 

1. Recall that a uniform limit of continuous functions is continuous as well 
(first lecture). Thus Xt is continuous a.s. As a result Xt ∈ M2,c and M2,c is 
closed. 

Doob-Meyer decomposition and quadratic variation of processes in M2,c 

Consider a Brownian motion Bt adopted to a filtration Ft. Suppose this filtration 
makes Bt a strong Markov process (for example Ft is generated by B itself). 
Recall that both Bt and B2 − t are martingales and also B ∈ M2,c. Finallyt 
recall that the quadratic variation of B over any interval [0, t] is t. There is a 
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generalization of these observations to processes in M2,c. For this we need to 
recall the following result. 

Theorem 1 (Doob-Meyer decomposition). Suppose (Xt, Ft) is a continuous 
non-negative sub-martingale. Then there exist a continuous martingale Mt and 
a.s. non-decreasing continuous process At with A0 = 0, both adopted go Ft 
such that Xt = At + Mt. The decomposition is unique in the almost sure sense. 

The proof of this theorem is skipped. It is obtained by appropriate discretiza
tion and passing to limits. The discrete version of this result we did earlier. See 
[1] for details. 

Now suppose Xt ∈ M2,c. Then X2 is a continuous non-negative submartint 
gale and thus DM theorem applies. The part At in the unique decomposition of 
X2 is called quadratic variation of Xt (we will shortly justify this) and denoted t 
(Xt). 

Theorem 2. Suppose Xt ∈ M2,c. Then for every t > 0 the following conver
gence in probability takes place  

lim (Xtj+1 − Xtj )
2 → (Xt), 

Πn:Δ(Πn)→0
0≤j≤n−1 

where the limit is over all partitions Πn = {0 = t0 < t1 < · · · < tn = t} and 
Δ(Πn) = maxj |tj − tj−1|. 

Proof. Fix s < t. Let X ∈ M2,c. We have 

E[(Xt − Xs)
2 − ((Xt) − (Xs))|Fs] = E[X2 − 2XtXs + X2 − ((Xt) − (Xs))|Fs]t s 

= E[X2|Fs] − 2XsE[Xt|Fs] + X2 − E[(Xt)|Fs] + (Xs)t s 

= E[X2 − (Xt)|Fs] − X2 + (Xs)t s 

= 0. 

Thus for every s < t ≤ u < v by conditioning first on Fu and using tower 
property we obtain     
E (Xt − Xs)

2 − ((Xt) − (Xs)) (Xu − Xv)
2 − ((Xu) − (Xv)) = 0 (1) 

The proof of the following lemma is application of various ”carefully placed” 
tower properties and is omitted. See [1] Lemma 1.5.9 for details. 

Lemma 1. Suppose X ∈ M2 satisfies |Xs| ≤ M a.s. for all s ≤ t. Then for 
every partition 0 = t0 ≤ · · · ≤ tn = t    2 

E )2 ≤ 6M4 .(Xtj+1 − Xtj 

j 
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Lemma 2. Suppose X ∈ M2 satisfies |Xs| ≤ M a.s. for all s ≤ t. Then 

lim E[ (Xtj+1 − Xtj )
4] = 0, 

Δ(Πn)→0 
j 

where Πn = {0 = t0 < · · · < tn = t}, Δ(Πn) = maxj |tj+1 − tj |. 

Proof. We have 

(Xtj+1 − Xtj )
4 ≤ (Xtj+1 − Xtj )

2 sup{|Xr − Xs|2 : |r − s| ≤ Δ(Πn)}. 
j j 

Applying Cauchy-Schwartz inequality and Lemma 1 we obtain 

2 2 
E[ (Xtj+1 − Xtj )

4] ≤ E (Xtj+1 − Xtj )
2 E[sup{|Xr − Xs|4 : |r − s| ≤ Δ(Πn)}] 

j j 

≤ 6M4E[sup{|Xr − Xs|4 : |r − s| ≤ Δ(Πn)}]. 

Now X(ω) is a.s. continuous and therefore uniformly continuous on [0, t]. 
Therefore, a.s. sup{|Xr − Xs|2 : |r − s| ≤ Δ(Πn)} → 0 as Δ(Πn) → 0. 
Also |Xr − Xs| ≤ 2M a.s. Applying Bounded Convergence Theorem, we ob
tain that E[sup{|Xr − Xs|4 : |r − s| ≤ Δ(Πn)}] converges to zero as well and 
the result is obtained. 

We now return to the proof of the proposition. We first assume |Xs| ≤ M 
and (Xs) ≤ M a.s. for s ∈ [0, t]. 

We have (using a telescoping sum) 

2   2 
E (Xtj+1 − Xtj )

2 − (Xt) = E (Xtj+1 − Xtj )
2 − ((Xtj+1 ) − (Xtj ))

j j

When we expand the square the terms corresponding to cross products with 
j1  = j2 disappear due to (1). Thus the expression is equal to 

2 
E (Xtj+1 − Xtj )

2 − ((Xtj+1 ) − (Xtj )) 
j   

≤ 2E (Xtj+1 − Xtj )
4 + 2E[ ((Xtj+1 ) − (Xtj ))2]. 

j j 

The first term converges to zero as Δ(Πn) → 0 by Lemma 2. 
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We now analyze the second term. Since (Xt) is a.s. non-decreasing, then 

((Xtj+1 ) − (Xtj ))2 ≤ ((Xtj+1 ) − (Xtj )) sup {(Xr) − (Xs) : |r − s| ≤ Δ(Πn)}
0≤s≤r≤tj j 

Thus the expectation is upper bounded by 

E[(Xt) sup {(Xr) − (Xs) : |r − s| ≤ Δ(Πn)}] (2) 
0≤s≤r≤t

Now (Xt) is a.s. continuous and thus the supremum term converges to zero a.s. 
as n → ∞. On the other hand a.s. (Xt)((Xr) − (Xs)) ≤ 2M2 . Thus using 
Bounded Convergence Theorem, we obtain that the expectation in (2) converges 
to zero as well. We conclude that in the bounded case |Xs|, (Xs) ≤ M on [0, t], 
the quadratic variation of Xs over [0, t] converges to (Xt) in L2 sense. This 
implies convergence in probability as well. 

It remains to analyze the general (unbounded) case. Introduce stopping 
times TM for every M ∈ R+ as follows 

TM = min{t : |Xt| ≥ M or (Xt) ≥ M} 

Consider Xt
M £ Xt∧TM . Then XM ∈ M2,c and is a.s. bounded. Further 

since X2 − (Xt) is a martingale, then X2 − (Xt∧TM ) is a bounded martin-t t∧TM 
gale. Since Doob-Meyer decomposition is unique, we that (Xt∧TM ) is indeed 
the unique non-decreasing component of the stopped martingale Xt∧TM . There 
is a subtlety here: XM is a continuous martingale and therefore it has its own t 
quadratic variation (XM ) - the unique non-decreasing a.s. process such that t 
(XM )2 − (XM ) is a martingale. It is a priori non obvious that (XM ) is the t t t 
same as (Xt∧TM ) - quadratic variation of Xt stopped at TM . But due to unique
ness of the D-M decomposition, it is. 

Fix E > 0, t ≥ 0 and find M large enough so that P(TM < t) < E/2. This is 

  possible since Xt and (Xt) are continuous processes. Now we have 

)2 − (Xt) > E 
   P (Xtj+1 − Xtj 

j      
   > E, t ≤ TM 

)2 − (Xt∧TM 

)2 − (Xt)≤ P + P(TM < t)(Xtj+1 

j 
− Xtj    = P + P(TM(Xtj+1∧TM − Xtj ∧TM ) > E, t ≤ TM < t)  

j     ) > E + P(TM < t).)2 − (Xt∧TM
≤ P (Xtj+1∧TM − Xtj ∧TM 

j 
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We already established the result for bounded martingales and quadratic vari
ations. Thus, there exists δ = δ(E) > 0 such that, provided Δ(Π) < δ, we 
have 

P (Xtj+1∧TM − Xtj ∧TM )
2 − (Xt∧TM ) > E < E/2. 

j 

We conclude that for Π = {0 = t0 < t1 < · · · < tn = t} with Δ(Π) < δ, we 
have 

P (Xtj+1 − Xtj )
2 − (Xt) > E < E. 

j 

Additional reading materials 

• Chapter I. Karatzas and Shreve [1] 
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