MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Ito integral for simple processes

Content.

1. Simple processes. Ito isometry
2. First 3 steps in constructing Ito integral for general processes

1 Ito integral for simple processes. Ito isometry

Consider a Brownian motion B_{t} adopted to some filtration \mathcal{F}_{t} such that $\left(B_{t}, \mathcal{F}_{t}\right)$ is a strong Markov process. As an example we can take filtration generated by the Brownian motion itself. Our goal is to give meaning to expressions of the form $\int X_{t} d B_{t}=\int X_{t}(\omega) d B_{t}(\omega)$, where X_{t} is some stochastic process which is adapted to the same filtration as B_{t}. We will primarily deal with the case $X \in \mathcal{L}_{2}$, although it is possible to extend definitions to more general processes using the notion of local martingales. As in the case of usual integration, the idea is to define $\int X_{t}(\omega) d B_{t}(\omega)$ as some kind of a limit of (random) sums $\sum_{j} X_{t_{j}}(\omega)\left(B_{t_{j+1}}(\omega)-B_{t_{j}}(\omega)\right)$ and show that the limit exists in some appropriate sense. As X_{t} we can take all kinds of processes, including B_{t} itself. For example we will show that $\int_{0}^{T} B_{t} d B_{t}$ makes sense and equals $(1 / 2) B_{T}^{2}-(1 / 2) T$.
Definition 1. A process $X \in \mathcal{L}_{2}=\mathcal{L}_{2}\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ is called simple if there exists a countable partition $\Pi: 0=t_{0}<\cdots<t_{n}<\cdots$ with $\lim _{n} t_{n}=\infty$ such that $X_{t}(\omega)=X_{t_{j}}(\omega)$ for all $t \in\left[t_{j}, t_{j+1}\right), j=0,1,2, \ldots$ for all $\omega \in \Omega$. The subspace of simple processes is denoted by \mathcal{L}_{2}^{0}

We assume that partition is such that $t_{j} \rightarrow \infty$ as $j \rightarrow \infty$. It is important to note that we assume that the partition Π does not depend on ω. Thus not every piece-wise constant process is a simple process. Give an example of a piecewise constant process which is not simple. Note that since $X_{t} \in \mathcal{F}_{t}$ we have $X_{t_{j}} \in \mathcal{F}_{t_{j}}$ for each j. As an example of simple process, fix any partition Π and a process $X_{t} \in \mathcal{L}_{2}$ and consider the process $\hat{X}_{t}(\omega)$ defined by $\hat{X}_{t}(\omega)=$
$X_{t_{j}}(\omega)$, where t_{j} is defined by $t \in\left[t_{j}, t_{j+1}\right)$. In the definition it is important that $\hat{X}_{t}=X_{t_{j}}$ and not $X_{t_{j+1}}$. Observe that the latter is not necessarily adopted to $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$.

Given a simple process X and t, define its integral by
$I_{t}(X(\omega))=\sum_{0 \leq j \leq n-1} X_{t_{j}}(\omega)\left(B_{t_{j+1}}(\omega)-B_{t_{j}}(\omega)\right)+X_{t_{n}}(\omega)\left(B_{t}(\omega)-B_{t_{n}}(\omega)\right)$,
where $n=\max \left\{j: t_{j} \leq t\right\}$. Observe that $I_{t}(X)$ is an a.s. continuous function (as B_{t} is a.s. continuous).

Theorem 1. The following properties hold for $I_{t}(X)$

$$
\begin{align*}
& I_{t}(\alpha X+\beta Y)=\alpha I_{t}(X)+\beta I_{t}(Y) . \tag{1}\\
& \mathbb{E}\left[I_{t}^{2}(X)\right]=\mathbb{E}\left[\int_{0}^{t} X_{s}^{2} d s\right][\text { Ito isometry }], \tag{2}\\
& I_{t}(X) \in \mathcal{M}_{2, c}, \tag{3}\\
& \mathbb{E}\left[\left(I_{t}(X)-I_{s}(X)\right)^{2} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\int_{s}^{t} X_{u}^{2} d u\right], \forall 0 \leq s<t \leq T . \tag{4}
\end{align*}
$$

Notice that (4) is a generalization of Ito isometry. We only prove Ito isometry, the proof of (4) follows along the same lines.

Proof. Define $t_{n}=t$ for convenience. We begin with (1). Let $\left\{t_{j}^{1}\right\}$ and $\left\{t_{j}^{2}\right\}$ be partitions corresponding to simple processes X and Y. Consider a partition $\left\{t_{j}\right\}$ obtained as a union of these two partitions. For each t_{j} which belongs to the second partition but not the first define $X_{t_{j}}=X_{t_{i}^{1}}$, where t_{i}^{1} is the largest point not exceeding t_{j}. Do a similar thing for Y. Observe that now $X_{t}=X_{t_{j}}$ for $t \in\left[t_{j}, t_{j+1}\right)$. The linearity of Ito integral then follows straight from the definition.

Now for (2) we have

$$
\mathbb{E}\left[I_{t}^{2}(X)\right]=\sum_{0 \leq j_{1}, j_{2} \leq n-1} \mathbb{E}\left[X_{t_{j_{1}}} X_{t_{j_{2}}}\left(B_{t_{j_{1}+1}}-B_{t_{j_{1}}}\right)\left(B_{t_{j_{2}+1}}-B_{t_{j_{2}}}\right)\right] .
$$

When $j_{1}<j_{2}$ we have

$$
\mathbb{E}\left[X_{t_{j_{1}}} X_{t_{j_{2}}}\left(B_{t_{j_{1}+1}}-B_{t_{j_{1}}}\right)\left(B_{t_{j_{2}+1}}-B_{t_{j_{2}}}\right)\right]=0
$$

which we obtain by conditioning on $\mathcal{F}_{{t_{2}}_{2}}$, using the tower property and observing that all of the random variables involved except for $B_{t_{j_{2}+1}}$ are measurable with respect to $\mathcal{F}_{t_{j_{2}}}$ (recall that $\mathcal{F}_{t_{j_{1}}} \subset \mathcal{F}_{t_{j_{2}}}$).

Now when $j_{1}=j_{2}=j$ we have

$$
\begin{aligned}
\mathbb{E}\left[X_{t_{j}}^{2}\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2}\right] & =\mathbb{E}\left[X_{t_{j}}^{2} \mathbb{E}\left[\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2} \mid \mathcal{F}_{t_{j}}\right]\right] \\
& =\mathbb{E}\left[X_{t_{j}}^{2}\left(t_{j+1}-t_{j}\right)\right] .
\end{aligned}
$$

Combining, we obtain

$$
\mathbb{E}\left[I_{t}^{2}(X)\right]=\sum_{j} \mathbb{E}\left[X_{t_{j}}^{2}\left(t_{j+1}-t_{j}\right)\right]=\mathbb{E}\left[\sum_{j} X_{t_{j}}^{2}\left(t_{j+1}-t_{j}\right)\right]=\mathbb{E}\left[\int_{0}^{t} X_{s}^{2} d s\right]
$$

Let us show (3). We already know that the process $I_{t}(X)$ is continuous. From Ito isometry it follows that $\mathbb{E}\left[I_{t}^{2}(X)\right]<\infty$. It remains to show that it is a martingale. Thus fix $s<t$. Define $t_{n}=t$ and define $j_{0}=\max \left\{j: t_{j} \leq s\right\}$.

$$
\begin{aligned}
\mathbb{E}\left[I_{t}(X) \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[\sum_{j \leq n-1} X_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right) \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\sum_{j \leq j_{0}-1} X_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right) \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[X_{t_{j_{0}}}\left(B_{s}-B_{t_{j_{0}}}\right) \mid \mathcal{F}_{s}\right] \\
& +\mathbb{E}\left[X_{t_{j_{0}}}\left(B_{t_{j_{0}+1}}-B_{s}\right) \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[\sum_{j>j_{0}} X_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right) \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\sum_{j \leq j_{0}-1} X_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right) \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[X_{t_{j_{0}}}\left(B_{s}-B_{t_{j_{0}}}\right) \mid \mathcal{F}_{s}\right] \\
& =I_{s}(X) .
\end{aligned}
$$

(think about justifying last two equalities).

2 Constructing Ito integral for general square integrable processes

The idea for defining Ito integral $\int X d B$ for general processes in \mathcal{L}_{2} is to approximate X by simple processes $X^{(n)}$ and define $\int X d B$ as a limit of $\int X^{(n)} d B$, which we have already defined.

For this purpose we need to show that we can indeed approximate X with simple processes appropriately. We do this in 3 steps.

Step 1.

Proposition 1. Suppose $X \in \mathcal{L}_{2}$ is an a.s. bounded continuous process in the sense $\exists M$ s.t. $\mathbb{P}\left(\omega: \sup _{t \geq 0}\left|X_{t}(\omega)\right| \leq M\right)=1$. Then for every $T>0$ there
exists a sequence of simple processes $X^{n} \in \mathcal{L}_{2}^{0}$ such that

$$
\begin{equation*}
\lim _{n} \mathbb{E}\left[\int_{0}^{T}\left(X_{t}^{n}-X_{t}\right)^{2} d t\right]=0 \tag{5}
\end{equation*}
$$

Proof. Fix a sequence of partitions $\Pi_{n}=\left\{t_{j}^{n}\right\}$ of $[0, T]$ such that $\Delta_{n}=\max \left(t_{j+1}^{n}-\right.$ $\left.t_{j}^{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Given process X, consider the modified process $X_{t}^{n}=X_{t_{j}^{n}}$ for all $t \in\left[t_{j}^{n}, t_{j+1}^{n}\right)$. This process is simple and is adapted to \mathcal{F}_{t}. Since X is a.s. continuous, then a.s. $X_{t}(\omega)=\lim _{n \rightarrow \infty} X_{t}^{n}(\omega)$ (notice that we are using leftcontinuity part of continuity). We conclude that a sequence of measurable functions $X^{n}: \Omega \times[0, T] \rightarrow \mathbb{R}$ a.s. converges to $X: \Omega \times[0, T] \rightarrow \mathbb{R}$. On the other hand $\mathbb{P}\left(\omega: \sup _{t \leq T}\left|X_{t}^{n}(\omega)\right| \leq M\right)=1$. Using Bounded Convergence Theorem, the a.s. convergence extends to integrals: $\mathbb{E}\left[\int_{0}^{T}\left(X_{t}^{n}-X_{t}\right)^{2} d t\right] \rightarrow 0$.

Step 2.

Proposition 2. Suppose $X \in \mathcal{L}_{2}$ is a bounded, but not necessarily continuous process: $|X| \leq M$ a.s. For every $T>0$, there exists a sequence of a.s. bounded continuous processes X_{n} such that

$$
\begin{equation*}
\lim _{n} \mathbb{E}\left[\int_{0}^{T}\left(X_{t}^{n}-X_{t}\right)^{2} d t\right]=0 \tag{6}
\end{equation*}
$$

Proof. We use a certain "regularization" trick to turn a bounded process into a bounded continuous approximation. Let $X_{t}^{n}=n \int_{t-1 / n}^{t} X_{s} d s$. We have $\left|X^{n}\right| \leq$ $n(1 / n) M=M$ and $\left|X_{t^{\prime}}^{n}-X_{t}^{n}\right| \leq 2 n\left|t^{\prime}-t\right| M$ (verify this), implying that X_{t}^{n} is a.s. bounded continuous. Since X_{t} is a.s. Riemann integrable, then for almost all ω, the set of discontinuity points of of $X_{t}(\omega)$ has measure zero and for all continuity points t by Fundamental Theorem of Calculus, we have $\lim _{n \rightarrow \infty} X_{t}^{n}(\omega)=X_{t}(\omega)$. We conclude that $X^{n}: \Omega \times[0, T] \rightarrow \mathbb{R}$ converges a.s. to X on the same domain. Applying the Bounded Convergence Theorem we obtain the result.

Step 3.

Proposition 3. Suppose $X \in \mathcal{L}_{2}$. For every $T>0$ there exists a sequence of a.s. bounded processes $X_{n} \in \mathcal{L}_{2}$ such that

$$
\begin{equation*}
\lim _{n} \mathbb{E}\left[\int_{0}^{T}\left(X_{t}^{n}-X_{t}\right)^{2} d t\right]=0 \tag{7}
\end{equation*}
$$

Proof. Define X^{n} by $X_{t}^{n}=X_{t}$ when $-n \leq X_{t} \leq n, X_{t}^{n}=-n$, when $X_{t}<-n$ and $X_{t}^{n}=n$, when $X_{t}>n$. We have $X^{n} \rightarrow X$ a.s. w.r.t both ω and $t \in[0, T]$. Also $\left|X_{t}^{n}\right| \leq\left|X_{t}\right|$ implying

$$
\begin{aligned}
\int_{0}^{T}\left(X_{t}^{n}-X_{t}\right)^{2} d t & \leq 2 \int_{0}^{T}\left(X_{t}^{n}\right)^{2} d t+2 \int_{0}^{T} X_{t}^{2} d t \\
& \leq 4 \int_{0}^{T} X_{t}^{2} d t
\end{aligned}
$$

Since $\mathbb{E}\left[\int_{0}^{T} X_{t}^{2} d t\right]<\infty$, then applying Dominated Convergence Theorem, we obtain the result.

Exercise 1. Establish (7) by applying instead Monotone Convergence Theorem.

3 Additional reading materials

- Karatzas and Shreve [1].
- Øksendal [2], Chapter III.

References

[1] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Springer, 1991.
[2] B. Øksendal, Stochastic differential equations, Springer, 1991.

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

