MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Ito integral. Properties

Content.

1. Definition of Ito integral
2. Properties of Ito integral

1 Ito integral. Existence

We continue with the construction of Ito integral. Combining the results of Propositions 1-3 from the previous lecture we proved the following result.
Proposition 1. Given any process $X \in \mathcal{L}_{2}$ there exists a sequence of simple processes $X_{n} \in \mathcal{L}_{2}^{0}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\int_{0}^{T}\left(X_{n}(t)-X(t)\right)^{2} d t\right]=0 \tag{1}
\end{equation*}
$$

Now, given a process $X \in \mathcal{L}_{2}$, we fix any sequence of simple processes $X^{n} \in \mathcal{L}_{2}^{0}$ which satisfies (1) for a given T. Recall, that we already have defined Ito integral for simple processes $I_{t}\left(X^{n}\right)$.
Proposition 2. Suppose a sequence of simple processes X^{n} satisfies (1). There exists a process $Z_{t} \in M_{2, c}$ satisfying $\lim _{n} \mathbb{E}\left[\left(Z_{t}-I_{t}\left(X^{n}\right)\right)^{2}\right]=0$ for all $0 \leq$ $t \leq T$. This process is unique a.s. in the following sense: if \hat{X}_{t}^{n} is another process satisfying (1) and \hat{Z} is the corresponding limit, then $\mathbb{P}\left(\hat{Z}_{t}=Z_{t}, \forall t \in\right.$ $[0, T])=1$.
Proof. Fix $T>0$. Applying linearity of $I_{t}(X)$ and Ito isometry

$$
\begin{aligned}
\mathbb{E}\left[\left(I_{T}\left(X_{m}\right)-I_{T}\left(X_{n}\right)\right)^{2}\right] & =\mathbb{E}\left[I_{T}^{2}\left(X_{m}-X_{n}\right)\right] \\
& =\mathbb{E}\left[\int_{0}^{T}\left(X_{m}(t)-X_{n}(t)\right)^{2} d t\right] \\
& \leq 2 \mathbb{E}\left[\int_{0}^{T}\left(X(t)-X_{m}(t)\right)^{2} d t\right]+2 \mathbb{E}\left[\int_{0}^{T}\left(X(t)-X_{n}(t)\right)^{2} d t\right] .
\end{aligned}
$$

But since the sequence X_{n} satisfies (1), it follows that the sequence $I_{T}\left(X^{n}\right)$ is Cauchy in \mathbb{L}_{2} sense. Recall now from Theorem 2.2. previous lecture that each $I_{t}\left(X^{n}\right)$ is a continuous square integrable martingale: $I_{t}\left(X^{n}\right) \in M_{2, c}$ Applying Proposition 2, Lecture 1, which states that $M_{2, c}$ is a closed space, there exists a limit $Z_{t}, t \in[0, T]$ in $M_{2, c}$ satisfying $\mathbb{E}\left[\left(Z_{T}-I_{T}\left(X^{n}\right)\right)^{2}\right] \rightarrow 0$. The same applies to every $t \leq T$ since $\left(Z_{t}-I_{t}\left(X^{n}\right)\right)^{2}$ is a submartingale.

It remains to show that such a process Z_{t} is unique. If \hat{Z}_{t} is a limit of some sequence \hat{X}^{n} satisfying (1), then by submartingale inequality for every $\epsilon>0$ we have $\mathbb{P}\left(\sup _{t \leq T}\left|Z_{t}-\hat{Z}_{t}\right| \geq \epsilon\right) \leq \mathbb{E}\left[\left(Z_{T}-\hat{Z}_{T}\right)^{2}\right] / \epsilon^{2}$. But

$$
\begin{aligned}
\mathbb{E}\left[\left(Z_{T}-\hat{Z}_{T}\right)^{2}\right] & \leq 3 \mathbb{E}\left[\left(Z_{T}-I_{T}\left(X^{n}\right)\right)^{2}\right]+3 \mathbb{E}\left[\left(I_{T}\left(X^{n}\right)-I_{T}\left(\hat{X}^{n}\right)\right)^{2}\right] \\
& +3 \mathbb{E}\left[\left(I_{T}\left(\hat{X}^{n}\right)-\hat{Z}_{T}\right)^{2}\right]
\end{aligned}
$$

and the right-hand side converges to zero. Thus $\mathbb{E}\left[\left(Z_{T}-\hat{Z}_{T}\right)^{2}\right]=0$. It follows that $Z_{t}=\hat{Z}_{t}$ a.s. on $[0, T]$. Since T was arbitrary we obtain an a.s. unique limit on \mathbb{R}_{+}.

Now we can formally state the definition of Ito integral.
Definition 1 (Ito integral). Given a stochastic process $X_{t} \in \mathcal{L}_{2}$ and $T>0$, its Ito integral $I_{t}(X), t \in[0, T]$ is defined to be the unique process Z_{t} constructed in Proposition 2.

We have defined Ito integral as a process which is defined only on a finite interval $[0, T]$. With a little bit of extra work it can be extended to a process $I_{t}(X)$ defined for all $t \geq 0$, by taking $T \rightarrow \infty$ and taking appropriate limits. Details can be found in [1] and are omitted, as we will deal exclusively with Ito integrals defined on a finite interval.

2 Ito integral. Properties

2.1 Simple example

Let us compute the Ito integral for a special case $X_{t}=B_{t}$. We will do this directly from the definition. Later on we will develop calculus rules for computing the Ito integral for many interesting cases.

We fix a sequence of partitions $\Pi_{n}: 0=t_{0}<\cdots<t_{n}=T$ and consider $B_{t}^{n}=B_{t_{j}}, t \in\left[t_{j}, t_{j+1}\right)$. Assume that $\lim _{n} \Delta\left(\Pi_{n}\right)=0$, where $\Delta\left(\Pi_{n}\right)=$ $\max _{j}\left|t_{j+1}-t_{j}\right|$. We first show that this is sufficient for having

$$
\begin{equation*}
\lim _{n} \mathbb{E}\left[\int_{0}^{T}\left(B_{t}-B_{t}^{n}\right)^{2} d t\right]=0 \tag{2}
\end{equation*}
$$

Indeed

$$
\int_{0}^{T}\left(B_{t}-B_{t}^{n}\right)^{2} d t=\sum_{j=0}^{n-1} \int_{t_{j}}^{t_{j+1}}\left(B_{t}-B_{t_{j}}\right)^{2} d t .
$$

We have

$$
\begin{aligned}
\mathbb{E}\left[\int_{t_{j}}^{t_{j+1}}\left(B_{t}-B_{t_{j}}\right)^{2} d t\right. & =\int_{t_{j}}^{t_{j+1}} \mathbb{E}\left[\left(B_{t}-B_{t_{j}}\right)^{2}\right] d t \\
& =\int_{t_{j}}^{t_{j+1}}\left(t-t_{j}\right) d t \\
& =\frac{\left(t_{j+1}-t_{j}\right)^{2}}{2},
\end{aligned}
$$

implying
$\mathbb{E}\left[\int_{0}^{T}\left(B_{t}-B_{t}^{n}\right)^{2} d t\right]=\frac{1}{2} \sum_{j=0}^{n-1}\left(t_{j+1}-t_{j}\right)^{2} \leq \Delta\left(\Pi_{n}\right) \sum_{j=0}^{n-1}\left(t_{j+1}-t_{j}\right)=\Delta\left(\Pi_{n}\right) T \rightarrow 0$,
as $n \rightarrow \infty$. Thus (2) holds.
Thus we need to compute the \mathbb{L}_{2} limit of

$$
I_{T}\left(B_{n}\right)=\sum_{j} B_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right)
$$

as $n \rightarrow \infty$. We use the identity

$$
B_{t_{j+1}}^{2}-B_{t_{j}}^{2}=\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2}+2 B_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right),
$$

implying
$B^{2}(T)-B^{2}(0)=\sum_{j=0}^{n-1} B_{t_{j+1}}^{2}-B_{t_{j}}^{2}=\sum_{j=0}^{n-1}\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2}+2 \sum_{j=0}^{n-1} B_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right)$,
But recall the quadratic variation property of the Brownian motion:

$$
\lim _{n} \sum_{j=0}^{n-1}\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2}=T
$$

in \mathbb{L}_{2} (recall that the only requirement for this convergence was that $\Delta\left(\Pi_{n}\right) \rightarrow$ 0). Therefore, also in \mathbb{L}_{2}

$$
\sum_{j=0}^{n-1} B_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right) \rightarrow \frac{1}{2} B^{2}(T)-\frac{T}{2} .
$$

We conclude

Proposition 3. The following identity holds

$$
I_{T}(B)=\int_{0}^{T} B_{t} d B_{t}=\frac{1}{2} B^{2}(T)-\frac{T}{2}
$$

Further, recall that since $B_{t} \in M_{2, c}$ then it admits a unique Doob-Meyer decomposition $B_{t}^{2}=t+M_{t}$, where $t=\left\langle B_{t}\right\rangle$ is the quadratic variation of B_{t} and M_{t} is a continuous martingale. Thus we recognize M_{t} to be $2 I_{t}(B)$.

2.2 Properties

We already know that $I_{t}(X) \in \mathcal{M}_{2, c}$, in particular it a is continuous martingale. Let us establish additional properties, some of which are generalizations of Theorem 2.2 from the previous lecture.

Proposition 4. The following properties hold for $I_{t}(X)$:

$$
\begin{align*}
& I_{t}(\alpha X+\beta Y)=\alpha I_{t}(X)+\beta I_{t}(Y), \forall \alpha, \beta, \tag{3}\\
& \mathbb{E}\left[\left(I_{t}(X)-I_{s}(X)\right)^{2} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\int_{s}^{t} X_{u}^{2} d u \mid \mathcal{F}_{s}\right], \forall 0 \leq s<t \leq T \tag{4}
\end{align*}
$$

Furthermore, the quadratic variation of $I_{t}(X)$ on $[0, T]$ is $\int_{0}^{T} X_{t}^{2} d t$.
Proof. The proof of (3) is straightforward and is skipped. We now prove (4). Fix any set $A \in \mathcal{F}_{s}$. We need to show that

$$
\mathbb{E}\left[\left(I_{t}(X)-I_{s}(X)\right)^{2} I(A)\right]=\mathbb{E}\left[I(A) \int_{s}^{t} X_{u}^{2} d u\right]
$$

Fix a sequence $X^{n} \in \mathcal{L}_{2}^{0}$ satisfying (1). Then

$$
\begin{aligned}
\mathbb{E}\left[\left(I_{t}(X)-I_{s}(X)\right)^{2} I(A)\right] & =\mathbb{E}\left[\left(I_{t}(X)-I_{t}\left(X^{n}\right)\right)^{2} I(A)\right]+\mathbb{E}\left[\left(I_{t}\left(X^{n}\right)-I_{s}\left(X^{n}\right)\right)^{2} I(A)\right] \\
& +\mathbb{E}\left[\left(I_{s}\left(X^{n}\right)-I_{s}(X)\right)^{2} I(A)\right] \\
& +2 \mathbb{E}\left(I_{t}(X)-I_{t}\left(X^{n}\right)\right)\left(I_{t}\left(X^{n}\right)-I_{s}\left(X^{n}\right)\right) I(A) \\
& +2 \mathbb{E}\left(I_{t}(X)-I_{t}\left(X^{n}\right)\right)\left(I_{s}\left(X^{n}\right)-I_{s}(X)\right) I(A) \\
& +2 \mathbb{E}\left(I_{t}\left(X^{n}\right)-I_{s}\left(X^{n}\right)\right)\left(I_{s}\left(X^{n}\right)-I_{s}(X)\right) I(A)
\end{aligned}
$$

But $\mathbb{E}\left[\left(I_{t}(X)-I_{t}\left(X^{n}\right)\right)^{2} I(A)\right] \rightarrow 0$ since $\mathbb{E}\left[\left(I_{t}(X)-I_{t}\left(X^{n}\right)\right)^{2}\right] \rightarrow 0$ (definition of Ito integral). Similarly $\mathbb{E}\left[\left(I_{s}(X)-I_{s}\left(X^{n}\right)\right)^{2} I(A)\right] \rightarrow 0$. Applying Cauchy-Schwartz inequality

$$
\begin{aligned}
\mid \mathbb{E}\left(I_{t}(X)-I_{t}\left(X^{n}\right)\right) & \left(I_{t}\left(X^{n}\right)-I_{s}\left(X^{n}\right)\right) I(A) \mid \\
& \leq\left(\mathbb{E}\left[\left(I_{t}(X)-I_{t}\left(X^{n}\right)\right)^{2}\right]\right)^{1 / 2}\left(\mathbb{E}\left[\left(I_{t}\left(X^{n}\right)-I_{s}\left(X^{n}\right)\right)^{2}\right]\right)^{1 / 2} \rightarrow 0
\end{aligned}
$$

from the definition of $I_{t}(X)$. Similarly we show that all the other terms with factor 2 in front converge to zero.

By property (2.6) Theorem 2.2 previous lecture, we have

$$
\mathbb{E}\left[\left(I_{t}\left(X^{n}\right)-I_{s}\left(X^{n}\right)\right)^{2} I(A)\right]=\mathbb{E}\left[I(A) \int_{s}^{t}\left(X_{u}^{n}\right)^{2} d u\right]
$$

Now

$$
\begin{aligned}
\mathbb{E}\left[I(A) \int_{s}^{t}\left(X_{u}^{n}\right)^{2} d u\right]-\mathbb{E}\left[I(A) \int_{s}^{t} X_{u}^{2} d u\right] & =\mathbb{E}\left[I(A) \int_{s}^{t}\left(X_{u}^{n}-X_{u}\right)\left(X_{u}^{n}+X_{u}\right) d u\right] \\
& \leq \mathbb{E}\left[\int_{s}^{t}\left|\left(X_{u}^{n}-X_{u}\right)\left(X_{u}^{n}+X_{u}\right)\right| d u\right] \\
& \leq \mathbb{E}^{\frac{1}{2}}\left[\int_{s}^{t}\left(X_{u}^{n}-X_{u}\right)^{2} d u\right] \mathbb{E}^{\frac{1}{2}}\left[\int_{s}^{t}\left(X_{u}^{n}+X_{u}\right)^{2} d u\right]
\end{aligned}
$$

where Cauchy-Schwartz inequality was used in the last step. Now the first term in the product converges to zero by the assumption (1) and the second is uniformly bounded in n (exercise). The assertion then follows.

Now we prove the last part. Applying Proposition 3 from Lecture 1, it suffices to show that $I_{t}^{2}(X)-\int_{0}^{t} X_{s}^{2} d s$ is a martingale, since then by uniqueness of the Doob-Meyer decomposition we must have that $\left\langle I_{t}(X)\right\rangle=\int_{0}^{t} X_{s}^{2} d s$. But note that (4) is equivalent to

$$
\begin{aligned}
\mathbb{E}\left[I_{t}^{2}(X)-I_{s}^{2}(X) \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[I_{t}^{2}(X) \mid \mathcal{F}_{s}\right]-I_{s}^{2}(X) & =\mathbb{E}\left[\int_{s}^{t} X_{u}^{2} d u \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\int_{0}^{t} X_{u}^{2} d u \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[\int_{0}^{s} X_{u}^{2} d u \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\int_{0}^{t} X_{u}^{2} d u \mid \mathcal{F}_{s}\right]-\int_{0}^{s} X_{u}^{2} d u
\end{aligned}
$$

Namely,

$$
\mathbb{E}\left[I_{t}^{2}(X) \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[\int_{0}^{t} X_{u}^{2} d u \mid \mathcal{F}_{s}\right]=I_{s}^{2}(X)-\int_{0}^{s} X_{u}^{2} d u
$$

namely, $I_{t}^{2}(X)-\int_{0}^{t} X_{s}^{2} d s$ is indeed a martingale.

3 Additional reading materials

- Karatzas and Shreve [1].
- Øksendal [2], Chapter III.

References

[1] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Springer, 1991.
[2] B. Øksendal, Stochastic differential equations, Springer, 1991.

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

