MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.265/15.070J	Fall 2013
Lecture 2	9/9/2013

Large Deviations for i.i.d. Random Variables

Content. Chernoff bound using exponential moment generating functions. Properties of a moment generating functions. Legendre transforms.

1 Preliminary notes

The Weak Law of Large Numbers tells us that if X_1, X_2, \ldots , is an i.i.d. sequence of random variables with mean $\mu \triangleq \mathbb{E}[X_1] < \infty$ then for every $\epsilon > 0$

$$\mathbb{P}(|\frac{X_1 + \ldots + X_n}{n} - \mu| > \epsilon) \to 0,$$

as $n \to \infty$.

But how quickly does this convergence to zero occur? We can try to use Chebyshev inequality which says

$$\mathbb{P}(|\frac{X_1 + \ldots + X_n}{n} - \mu| > \epsilon) \le \frac{\operatorname{Var}(X_1)}{n\epsilon^2}.$$

This suggest a "decay rate" of order $\frac{1}{n}$ if we treat $Var(X_1)$ and ϵ as a constant. Is this an accurate rate? Far from so ...

In fact if the higher moment of X_1 was finite, for example, $\mathbb{E}[X_1^{2m}] < \infty$, then using a similar bound, we could show that the decay rate is at least $\frac{1}{n^m}$ (exercise).

The goal of the large deviation theory is to show that in many interesting cases the decay rate is in fact *exponential*: e^{-cn} . The exponent c > 0 is called the *large deviations rate*, and in many cases it can be computed explicitly or numerically.

2 Large deviations upper bound (Chernoff bound)

Consider an i.i.d. sequence with a common probability distribution function $F(x) = \mathbb{P}(X \le x), x \in \mathbb{R}$. Fix a value $a > \mu$, where μ is again an expectation corresponding to the distribution F. We consider probability that the average of X_1, \ldots, X_n exceeds a. The WLLN tells us that this happens with probability converging to zero as n increases, and now we obtain an estimate on this probability. Fix a positive parameter $\theta > 0$. We have

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > a) = \mathbb{P}(\sum_{1 \le i \le n} X_i > na)$$
$$= \mathbb{P}(e^{\theta \sum_{1 \le i \le n} X_i} > e^{\theta na})$$
$$\leq \frac{\mathbb{E}[e^{\theta \sum_{1 \le i \le n} X_i}]}{e^{\theta na}} \quad \text{Markov inequality}$$
$$= \frac{\mathbb{E}[\prod_i e^{\theta X_i}]}{(e^{\theta a})^n},$$

But recall that X_i 's are i.i.d. Therefore $\mathbb{E}[\prod_i e^{\theta X_i}] = (\mathbb{E}[e^{\theta X_1}])^n$. Thus we obtain an upper bound

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > a) \le \left(\frac{\mathbb{E}[e^{\theta X_1}]}{e^{\theta a}}\right)^n.$$
(1)

Of course this bound is meaningful only if the ratio $\mathbb{E}[e^{\theta X_1}]/e^{\theta a}$ is less than unity. We recognize $\mathbb{E}[e^{\theta X_1}]$ as the moment generating function of X_1 and denote it by $M(\theta)$. For the bound to be useful, we need $\mathbb{E}[e^{\theta X_1}]$ to be at least finite. If we could show that this ratio is less than unity, we would be done – exponentially fast decay of the probability would be established.

Similarly, suppose we want to estimate

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} < a),$$

for some $a < \mu$. Fixing now a negative $\theta < 0$, we obtain

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} < a) = \mathbb{P}(e^{\theta \sum_{1 \le i \le n} X_i} > e^{\theta n a})$$
$$\leq \left(\frac{M(\theta)}{e^{\theta a}}\right)^n,$$

and now we need to find a negative θ such that $M(\theta) < e^{\theta a}$. In particular, we need to focus on θ for which the moment generating function is finite. For this purpose let $\mathcal{D}(M) \triangleq \{\theta : M(\theta) < \infty\}$. Namely $\mathcal{D}(M)$ is the set of values θ for which the moment generating function is finite. Thus we call \mathcal{D} the domain of M.

3 Moment generating function. Examples and properties

Let us consider some examples of computing the moment generating functions.

• Exponential distribution. Consider an exponentially distributed random variable X with parameter λ . Then

$$M(\theta) = \int_0^\infty e^{\theta x} \lambda e^{-\lambda x} dx$$
$$= \lambda \int_0^\infty e^{-(\lambda - \theta)x} dx$$

When $\theta < \lambda$ this integral is equal to $\frac{-1}{\lambda-\theta}e^{-(\lambda-\theta)x}\Big|_0^\infty = 1/(\lambda-\theta)$. But when $\theta \ge \lambda$, the integral is infinite. Thus the exp. moment generating function is finite iff $\theta < \lambda$ and is $M(\theta) = \lambda/(\lambda-\theta)$. In this case the domain of the moment generating function is $\mathcal{D}(M) = (-\infty, \lambda)$.

Standard Normal distribution. When X has standard Normal distribution, we obtain

$$M(\theta) = \mathbb{E}[e^{\theta X}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\theta x} e^{-\frac{x^2}{2}} dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2 - 2\theta x + \theta^2 - \theta^2}{2}} dx$$
$$= e^{\frac{\theta^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-\theta)^2}{2}} dx$$

Introducing change of variables $y = x - \theta$ we obtain that the integral is equal to $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = 1$ (integral of the density of the standard Normal distribution). Therefore $M(\theta) = e^{\frac{\theta^2}{2}}$. We see that it is always finite and $\mathcal{D}(M) = \mathbb{R}$.

In a retrospect it is not surprising that in this case $M(\theta)$ is finite for all θ . The density of the standard Normal distribution "decays like" $\approx e^{-x^2}$ and this is faster than just exponential growth $\approx e^{\theta x}$. So no matter how large is θ the overall product is finite.

• **Poisson distribution.** Suppose *X* has a Poisson distribution with parameter *λ*. Then

$$M(\theta) = \mathbb{E}[e^{\theta X}] = \sum_{m=0}^{\infty} e^{\theta m} \frac{\lambda^m}{m!} e^{-\lambda}$$
$$= \sum_{m=0}^{\infty} \frac{(e^{\theta} \lambda)^m}{m!} e^{-\lambda}$$
$$= e^{e^{\theta} \lambda - \lambda},$$

(where we use the formula $\sum_{m\geq 0} \frac{t^m}{m!} = e^t$). Thus again $\mathcal{D}(M) = \mathbb{R}$. This again has to do with the fact that $\lambda^m/m!$ decays at the rate similar to 1/m! which is faster then any exponential growth rate $e^{\theta m}$.

We now establish several properties of the moment generating functions.

Proposition 1. The moment generating function $M(\theta)$ of a random variable X satisfies the following properties:

- (a) M(0) = 1. If $M(\theta) < \infty$ for some $\theta > 0$ then $M(\theta') < \infty$ for all $\theta' \in [0, \theta]$. Similarly, if $M(\theta) < \infty$ for some $\theta < 0$ then $M(\theta') < \infty$ for all $\theta' \in [\theta, 0]$. In particular, the domain $\mathcal{D}(M)$ is an interval containing zero.
- (b) Suppose $(\theta_1, \theta_2) \subset \mathcal{D}(M)$. Then $M(\theta)$ as a function of θ is differentiable in θ for every $\theta_0 \in (\theta_1, \theta_2)$, and furthermore,

$$\frac{d}{d\theta}M(\theta)\Big|_{\theta=\theta_0} = \mathbb{E}[Xe^{\theta_0 X}] < \infty.$$

Namely, the order of differentiation and expectation operators can be changed.

Proof. Part (a) is left as an exercise. We now establish part (b). Fix any $\theta_0 \in (\theta_1, \theta_2)$ and consider a θ -indexed sequence of random variables

$$Y_{\theta} \triangleq \frac{\exp(\theta X) - \exp(\theta_0 X)}{\theta - \theta_0}.$$

Since $\frac{d}{d\theta} \exp(\theta x) = x \exp(\theta x)$, then almost surely $Y_{\theta} \to X \exp(\theta_0 X)$, as $\theta \to \theta_0$. Thus to establish the claim it suffices to show that convergence of expectations holds as well, namely $\lim_{\theta\to\theta_0} \mathbb{E}[Y_{\theta}] = \mathbb{E}[X \exp(\theta_0 X)]$, and $\mathbb{E}[X \exp(\theta_0 X)] < \infty$. For this purpose we will use the Dominated Convergence Theorem. Namely, we will identify a random variable Z such that $|Y_{\theta}| \le Z$ almost surely in some interval $(\theta_0 - \epsilon, \theta_0 + \epsilon)$, and $\mathbb{E}[Z] < \infty$.

Fix $\epsilon > 0$ small enough so that $(\theta_0 - \epsilon, \theta_0 + \epsilon) \subset (\theta_1, \theta_2)$. Let $Z = \epsilon^{-1} \exp(\theta_0 X + \epsilon |X|)$. Using the Taylor expansion of $\exp(\cdot)$ function, for every $\theta \in (\theta_0 - \epsilon, \theta_0 + \epsilon)$, we have

$$Y_{\theta} = \exp(\theta_0 X) \left(X + \frac{1}{2!} (\theta - \theta_0) X^2 + \frac{1}{3!} (\theta - \theta_0)^2 X^3 + \dots + \frac{1}{n!} (\theta - \theta_0)^{n-1} X^n + \dots \right),$$

which gives

$$\begin{aligned} |Y_{\theta}| &\leq \exp(\theta_0 X) \left(|X| + \frac{1}{2!} (\theta - \theta_0) |X|^2 + \dots + \frac{1}{n!} (\theta - \theta_0)^{n-1} |X|^n + \dots \right) \\ &\leq \exp(\theta_0 X) \left(|X| + \frac{1}{2!} \epsilon |X|^2 + \dots + \frac{1}{n!} \epsilon^{n-1} |X|^n + \dots \right) \\ &= \exp(\theta_0 X) \epsilon^{-1} \left(\exp(\epsilon |X|) - 1 \right) \\ &\leq \exp(\theta_0 X) \epsilon^{-1} \exp(\epsilon |X|) \\ &= Z. \end{aligned}$$

It remains to show that $\mathbb{E}[Z] < \infty$. We have

$$\mathbb{E}[Z] = \epsilon^{-1} \mathbb{E}[\exp(\theta_0 X + \epsilon X) \mathbf{1}\{X \ge 0\}] + \epsilon^{-1} \mathbb{E}[\exp(\theta_0 X - \epsilon X) \mathbf{1}\{X < 0\}]$$

$$\leq \epsilon^{-1} \mathbb{E}[\exp(\theta_0 X + \epsilon X)] + \epsilon^{-1} \mathbb{E}[\exp(\theta_0 X - \epsilon X)]$$

$$= \epsilon^{-1} M(\theta_0 + \epsilon) + \epsilon^{-1} M(\theta_0 - \epsilon)$$

$$< \infty,$$

since ϵ was chosen so that $(\theta_0 - \epsilon, \theta_0 + \epsilon) \subset (\theta_1, \theta_2) \subset \mathcal{D}(M)$. This completes the proof of the proposition.

Problem 1.

- (a) Establish part (a) of Proposition 1.
- (b) Construct an example of a random variable for which the corresponding interval is trivial $\{0\}$. Namely, $M(\theta) = \infty$ for every $\theta > 0$.

(c) Construct an example of a random variable X such that $\mathcal{D}(M) = [\theta_1, \theta_2]$ for some $\theta_1 < 0 < \theta_2$. Namely, the the domain \mathcal{D} is a non-zero length closed interval containing zero.

Now suppose the i.i.d. sequence $X_i, i \ge 1$ is such that $0 \in (\theta_1, \theta_2) \subset \mathcal{D}(M)$, where M is the moment generating function of X_1 . Namely, M is finite in a neighborhood of 0. Let $a > \mu = \mathbb{E}[X_1]$. Applying Proposition 1, let us differentiate this ratio with respect to θ at $\theta = 0$:

$$\frac{d}{d\theta}\frac{M(\theta)}{e^{\theta a}} = \frac{\mathbb{E}[X_1 e^{\theta X_1}]e^{\theta a} - ae^{\theta a}\mathbb{E}[e^{\theta X_1}]}{e^{2\theta a}} = \mu - a < 0.$$

Note that $M(\theta)/e^{\theta a} = 1$ when $\theta = 0$. Therefore, for sufficiently small positive θ , the ratio $M(\theta)/e^{\theta a}$ is smaller than unity, and (1) provides an exponential bound on the tail probability for the average of X_1, \ldots, X_n .

Similarly, if $a < \mu$, the ratio $M(\theta)/e^{\theta a} < 1$ for sufficiently small negative θ .

We now summarize our findings.

Theorem 1 (Chernoff bound). Given an i.i.d. sequence X_1, \ldots, X_n suppose the moment generating function $M(\theta)$ is finite in some interval $(\theta_1, \theta_2) \ni 0$. Let $a > \mu = \mathbb{E}[X_1]$. Then there exists $\theta > 0$, such that $M(\theta)/e^{\theta a} < 1$ and

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > a) \le \left(\frac{M(\theta)}{e^{\theta a}}\right)^n.$$

Similarly, if $a < \mu$, then there exists $\theta < 0$, such that $M(\theta)/e^{\theta a} < 1$ and

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} < a) \le \left(\frac{M(\theta)}{e^{\theta a}}\right)^n.$$

How small can we make the ratio $M(\theta)/\exp(\theta a)$? We have some freedom in choosing θ as long as $\mathbb{E}[e^{\theta X_1}]$ is finite. So we could try to find θ which minimizes the ratio $M(\theta)/e^{\theta a}$. This is what we will do in the rest of the lecture. The surprising conclusion of the large deviations theory is very often that such a minimizing value θ^* exists and is tight. Namely it provides *the correct decay rate*! In this case we will be able to say

$$\mathbb{P}(\frac{\sum_{1 \leq i \leq n} X_i}{n} > a) \approx \exp(-I(a, \theta^*)n)$$

where $I(a, \theta^*) = -\log\left(M(\theta^*)/e^{\theta^*a}\right)$.

4 Legendre transforms

Theorem 1 gave us a large deviations bound $(M(\theta)/e^{\theta a})^n$ which we rewrite as $e^{-n(\theta a - \log M(\theta))}$. We now study in more detail the exponent $\theta a - \log M(\theta)$.

Definition 1. A Legendre transform of a random variable X is the function $I(a) \triangleq \sup_{\theta \in \mathbb{R}} (\theta a - \log M(\theta)).$

Let us go over the examples of some distributions and compute their corresponding Legendre transforms.

• Exponential distribution with parameter λ . Recall that $M(\theta) = \lambda/(\lambda - \theta)$ when $\theta < \lambda$ and $M(\theta) = \infty$ otherwise. Therefore when $\theta < \lambda$

$$I(a) = \sup_{\theta} (a\theta - \log \frac{\lambda}{\lambda - \theta})$$

=
$$\sup_{\theta} (a\theta - \log \lambda + \log(\lambda - \theta)),$$

and $I(a) = -\infty$ otherwise. Setting the derivative of $g(\theta) = a\theta - \log \lambda + \log(\lambda - \theta)$ equal to zero we obtain the equation $a - 1/(\lambda - \theta) = 0$ which has the unique solution $\theta^* = \lambda - 1/a$. For the boundary cases, we have $a\theta - \log \lambda + \log(\lambda - \theta)) \to -\infty$ when either $\theta \uparrow \lambda$ or $\theta \to -\infty$ (check). Therefore

$$I(a) = a(\lambda - 1/a) - \log \lambda + \log(\lambda - \lambda + 1/a)$$

= $a\lambda - 1 - \log \lambda + \log(1/a)$
= $a\lambda - 1 - \log \lambda - \log a$.

The large deviations bound then tells us that when $a > 1/\lambda$

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > a) \approx e^{-(a\lambda - 1 - \log \lambda - \log a)n}.$$

Say $\lambda = 1$ and a = 1.2. Then the approximation gives us $\approx e^{-(.2 - \log 1.2)n}$.

Note that we can obtain an exact expression for this tail probability. Indeed, $X_1, X_1 + X_2, \ldots, X_1 + X_2 \cdots + X_n, \ldots$ are the events of a Poisson process with parameter $\lambda = 1$. Therefore we can compute the probability $\mathbb{P}(\sum_{1 \le i \le n} X_i > 1.2n)$ exactly: it is the probability that the Poisson

process has at most n-1 events before time 1.2n. Thus

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > 1.2) = \mathbb{P}(\sum_{1 \le i \le n} X_i > 1.2n)$$
$$= \sum_{0 \le k \le n-1} \frac{(1.2n)^k}{k!} e^{-1.2n}$$

It is not at all clear how revealing this expression is. In hindsight, we know that it is approximately $e^{-(.2-\log 1.2)n}$, obtained via large deviations theory.

• Standard Normal distribution. Recall that $M(\theta) = e^{\frac{\theta^2}{2}}$ when X_1 has the standard Normal distribution. The expected value $\mu = 0$. Thus we fix a > 0 and obtain

$$I(a) = \sup_{\theta} (a\theta - \frac{\theta^2}{2})$$
$$= \frac{a^2}{2},$$

achieved at $\theta^* = a$. Thus for a > 0, the large deviations theory predicts that

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > a) \approx e^{-\frac{a^2}{2}n}.$$

Again we could compute this probability directly. We know that $\frac{\sum_{1 \le i \le n} X_i}{n}$ is distributed as a Normal random variable with mean zero and variance 1/n. Thus

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > a) = \frac{\sqrt{n}}{\sqrt{2\pi}} \int_a^\infty e^{-\frac{t^2 n}{2}} dt.$$

After a little bit of technical work one could show that this integral is "dominated" by its part around *a*, namely, $\int_{a}^{a+\epsilon} \cdot$, which is further approximated by the value of the function itself at *a*, namely $\frac{\sqrt{n}}{\sqrt{2\pi}}e^{-\frac{a^2}{2}n}$. This is consistent with the value given by the large deviations theory. Simply the lower order magnitude term $\frac{\sqrt{n}}{\sqrt{2\pi}}$ disappears in the approximation on the log scale.

• **Poisson distribution.** Suppose X has a Poisson distribution with parameter λ . Recall that in this case $M(\theta) = e^{e^{\theta}\lambda - \lambda}$. Then

$$I(a) = \sup_{\theta} (a\theta - (e^{\theta}\lambda - \lambda)).$$

Setting derivative to zero we obtain $\theta^* = \log(a/\lambda)$ and $I(a) = a \log(a/\lambda) - (a - \lambda)$. Thus for $a > \lambda$, the large deviations theory predicts that

$$\mathbb{P}(\frac{\sum_{1 \le i \le n} X_i}{n} > a) \approx e^{-(a \log(a/\lambda) - a + \lambda)n}.$$

In this case as well we can compute the large deviations probability explicitly. The sum $X_1 + \cdots + X_n$ of Poisson random variables is also a Poisson random variable with parameter λn . Therefore

$$\mathbb{P}(\sum_{1 \le i \le n} X_i > an) = \sum_{m > an} \frac{(\lambda n)^m}{m!} e^{-\lambda n}.$$

But again it is hard to infer a more explicit rate of decay using this expression

5 Additional reading materials

- Chapter 0 of [2]. This is non-technical introduction to the field which describes motivation and various applications of the large deviations theory. Soft reading.
- Chapter 2.2 of [1].

References

- [1] A. Dembo and O. Zeitouni, *Large deviations techniques and applications*, Springer, 1998.
- [2] A. Shwartz and A. Weiss, *Large deviations for performance analysis*, Chapman and Hall, 1995.

15.070J / 6.265J Advanced Stochastic Processes Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.