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Additional technical results on weak convergence 

Given two metric spaces S1, S2 and a measurable function f : S1 → S2, sup
pose S1 is equipped with some probability measure P. This induces a proba
bility measure on S2 which is denoted by Pf−1 and is defined by Pf−1(A) = 
P(f−1(A)) for every measurable set A ⊂ S2. Then for any random variable 
X : S2 → R, its expectation EPf−1 [X] is equal to EP[X(f)]. (Convince your
self that this is the case by looking at the special case when f is a simple func
tion). 

Theorem 1 (Mapping Theorem). Suppose Pn ⇒ P for a sequence of probability 
measures P, Pn on S1 and suppose f : S1 → S2 is continuous. Then Pnf

−1 ⇒ 
Pf−1 on S2. 

Proof. We use Portmentau theorem, in particular weak convergence character
ization using bounded continuous functions. Thus let g : S2 → R be any 
bounded continuous function. Since it is continuous, it is also measurable, thus 
it is also a random variable defined on (S2, B2), where B2 is the Borel σ-field 
on S2. We have, 

EPnf−1 [g] = EPn [g(f)]. 

Since g is a bounded continuous, then the composition is also bounded continu
ous. Therefore, by Portmanteau theorem 

EPn [g(f)] → EP[g(f)] = EPf−1 [g] 
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Definition 1. A sequence of probability measures Pn on metric space S is de
fined to be tight if for every E > 0 there exists n0 and a compact set K ⊂ S, 
such that Pn(K) > 1 − E for all n > n0. 

Theorem 2 (Prohorov’s Theorem). Suppose sequence Pn is tight. Then it con
tains a weakly convergent subsequence Pn(k) ⇒ P. 

The converse of this theorem is also true, but we will not need this. We 
do not prove Prohorov’s Theorem. The proof can be found in [1]. Recall that 
Arzela-Ascoli Theorem provides a characterization of compact sets in C[0, T ]. 
We can use it now for characterization of tightness. 

Proposition 1. Suppose a sequence of measures Pn on C[0, T ] satisfies the fol
lowing conditions: 

(i) There exists a ≥ 0 such that limn Pn(|x(0)| ≥ a) = 0. 
(ii) For each E > 0, limδ→0 lim sup Pn({x : wx(δ) > E}) = 0.n  
Then the sequence Pn is tight.
 

Proof. Fix E > 0. From (i) we can find â and n0 large enough so that Pn(|x(0)| > 
â) < E for all n > n0. For every m ≤ n0 we can also find am large enough so 
that Pm(|x(0)| > am) < E. Take a = max(â, am). Then Pn(|x(0)| > a) < E 
for all n. Let B = {x : |x(0)| ≤ a}. We just showed Pn(B) ≥ 1 − E. 

Similarly, for every k > 0 we can find δ̂k and nk such that Pn(wx(δ̂k) > 
E/2k) < E/2k for all n > nk. For every fixed n ≤ nk we can find a small enough 
δn > 0 such that Pn(wx(δn) > E/2k) < E/2k since by uniform continuity of 
x we have ∩δ>0{wx(δ) > E/2k} = Ø a.s. Let δk = min(δ̂k,minn≤nk δn). 
Let Bk = {x : wx(δk) ≤ E}. Since Pn(B

c) < E/2k then Pn(∪kBk
c ) < E k

and Pn(∩kBk) ≥ 1 − E, for all n. Therefore Pn(B ∩ ∩kBk) ≥ 1 − 2E for all 
n. Then set K = B ∩ ∩kBk is closed (check) and satisfies the conditions of 
Arzela-Ascoli Theorem. Therefore it is compact. 

Functional Strong Law of Large Numbers (FSLLN) 

We are about to establish two very important limit results in the theory of stochas
tic processes. In probability theory two cornerstone theorems are (Weak or 
Strong) Law of Large Numbers and Central Limit Theorem. These theorems 
have direct analogue in the theory of stochastic processes as Functional Strong 
Law of Large Numbers (FSLLN) and Functional Central Limit Theorem (FCLT) 
also known as Donsker Theorem. The second theorem contains in it the fact that 
Wiener Measure exists. 
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We first describe the setup. Consider a sequence of i.i.d. random variables 
X1, X2, . . . , Xn, . . .. We assume that E[X1] = 0, E[X1

2] = σ2 . We can view 
each realization of an infinite sequence (Xn(ω)) as a sample in a product space 
R∞ equipped with product type σ-field F and probability measure Pi.i.d., in
duced by the probability distribution of X1. 

Define Sn = Xk. Fix an interval [0, T ] and for each n ≥ 1 and1≤k≤n 
t ∈ [0, T ] consider the following function 

S nt (ω) X nt +1(ω)
Nn(t) = + (nt −  nt ) . (1) 

n n 

This is a piece-wise linear continuous function in C[0, T ]. 

Theorem 3 (Functional Strong Law of Large Numbers (FSLLN)). Given an 
i.i.d. sequence (Xn), n ≥ 1 with E[X1] = 0, E[|X1|] < ∞, for every T > 0, the 
sequence of functions Nn : [0, T ] → R converges to zero almost surely. Namely 

P(INn(ω)IT → 0) = P( sup |Nn(t, ω)| → 0) = 1 
0≤t≤T 

As we see, just as SLLN, the FSLLN holds without any assumptions on the 
variance of X1, that is even if σ = ∞. 

Here is another way to state FSLLN. We may consider functions Nn defined 
on entire [0, ∞) using the same defining identity (1). Recall that sets [0, T ] are 
compact in R. An equivalent way of saying FSLLN is Nn converges to zero 
almost surely uniformly on compact sets. 

Proof. Fix E > 0 and T > 0. By SLLN we have that for almost all realizations 
ω of an sequence X1(ω), X2(ω), . . ., there exists n0(ω) such that for all n > 
n0(ω),    Sn(ω)  E   < 

n T 

We let M(ω) = max1≤m≤n0(ω) Sm(ω). We claim that for n > M(ω)/E, there 
holds 

sup |Nn(t)| < E. 
0≤t≤T 

We consider two cases. Suppose t ∈ [0, T ] is such that nt > n0(ω). Then �S nt (ω) S nt +1(ω)
� 

Nn(t) ≤ max , . 
n n 
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We have

Sbnt (ω) S )c bnt (ωc bnt ε
=

c
n bntc n

≤ t
T
≤ ε.

Using a similar bound on Sbntc+1(ω), we obtain

Nn(t)

n
≤ ε.

Suppose now t is such that nt ≤ n0(ω). Then

M(ω)|Nn(t)| ≤ < ε,
n

since, by our choice n > M(ω)/ε. We conclude sup0≤t≤T |Nn(t)| < ε for all
n > M(ω)/ε. This concludes the proof.

3 Weiner measure

FSSLN was a simpler functional limit theorem. Here we consider instead a
”Gaussian” scaling of a random walk Sn and establish existence of the Weiner
measure (Brownian motion) as well as FCLT. Thus suppose we have a sequence
of i.i.d. random variables X1, . . . , Xn with mean zero but finite variance σ2 <
∞. Instead of function (1) consider the following function

S nt (ω) X nt +1(ω)
Nn(t, ω) =

b √c + (nt
σ n

− bntc) b c

σ
√ , n
n

≥ 1, t ∈ [0, T ]. (2)

This is again a piece-wise linear continuous function. Then for each n we obtain
a mapping

ψn : R∞ → C[0, T ].

Of course, for each n, the mapping ψn depends only on the first nT + 1 coordi-
nates of samples in R∞.

Lemma 1. Each mapping ψn is measurable.

Proof. Here is where it helps to know that Kolmogorov field is identical to Borel
field on C[0, T ], that is Theorem 1.4 from the previous lecture. Indeed, now it
suffices to show that that ψ−1n (A) is measurable for each set A of the form
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A = π−1t (−∞, y], as these sets generate Kolmogorov/Borel σ-field. Each set
ψ−1n (π−1t (−∞, y]) is the set of all realizations Nn(ω) such that∑

1≤k √m
X

Nn(t, ω) =
≤ k(ω)

+ (nt−m)Xm+1(ω) y
σ n

≤ .

where m = bntc. This defines a measurable subset of Rm+1 R∞. One
way to see this is ∑to observe that the function f : Rm+1

⊂
→ R defined by

x
f(x1, . . . , xm) = 1≤k≤m k

σ
√ + (nt m)xm+1 is continuous and therefore is
n

−
measurable. We conclude that ψn is measurable for each n.

Thus each ψn induces a probability measure on C[0, T ], which we denote
by Pn. This probability measure is defined by

Pn(A) = Pi.i.d.(ψn
−1(A)) = Pi.i.d.(Nn(ω) ∈ A).

We now establish the principal result of this lecture – existence of Weiner
measure, namely, the existence of a Brownian motion.

Theorem 4 (Existence of Wiener measure). A sequence of measures Pn has a
weak limit P∗ which satisfies the property of Wiener measure on C[0, T ].

The proof of this fact is quite involved and we give only its scheme, skip-
ping some technical results. First let us outline the main steps in the proof.
In the previous lecture we considered projection mappings Pt : C[0, T ] → R.
Similarly, for any collection 0 ≤ t1 < · · · < tk we can consider πt1,...,tk(x) =
(x(t1), . . . , x(tk)) ∈ Rk.

1. We first show that the sequence of measures Pn on C[0, T ] is tight. We
use this to argue that there exists a subsequence Pn(k) which converges to
some measure π∗.

2. We show that π∗ satisfies the properties of Wiener measures. For this
purposes we look at the projected measures πt1,...,tk(π∗) on Rk and show
that these give a joint Gaussian distribution, the kind arising in a Brownian
motion (that is the joint distribution of (B(t1), B(t2), . . . , B(tk))). At this
point the existence of Wiener measure is established.

3. We then show that in fact the weak convergence πn
∗ ⇒ π holds.

Proof sketch. We begin with the following technical and quite delicate result
about random walks.
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Lemma 2. The following identity holds for random walks Sn = X1 + · · · +Xn: 
√ 

lim lim sup λ2P(max |Sk| ≥ λσ n) = 0. (3)
λ→∞ k≤nn→∞ 

Note, that this is indeed a very subtle result. We could try to use sub-
martingale inequality, since Sk is sub-martingale. It will give 

√ E[S2] 1nP(max |Sk| ≥ λσ n) ≤ = . 
k≤n λ2σ2n λ2 

So by taking a product with λ2 we do not obtain convergence to zero. On 
the other hand note that if the random variables have a finite fourth moment 
E[X4] < ∞, then the result follows from the sub-martingale inequality by con-n

sidering S4 in place of S2 (exercise). The proof of this lemma is based on the n n 
following fact: 

Proposition 2 (Etemadi’s Inequality,[1]). For every α > 0 

P(max |Sk| ≥ 3α) ≤ 3 max P(|Sk| ≥ α) 
k≤n k≤n 

Proof. Let Bk be the event |Sk| ≥ 3α, |Sj | < 3α, j < k. Then  
P(max |Sk| ≥ 3α) ≤ P(|Sn| ≥ α) + P(Bk ∩ |Sn| < α) 

k≤n 
k≤n  

≤ P(|Sn| ≥ α) + P(Bk ∩ |Sn − Sk| > 2α) 
k≤n  

= P(|Sn| ≥ α) + P(Bk)P(|Sn − Sk| > 2α) 
k≤n 

≤ P(|Sn| ≥ α) + max P(|Sn − Sk| ≥ 2α) 
k≤n 

≤ P(|Sn| ≥ α) + max (P(|Sn| ≥ α) + P(|Sk| ≥ α)) 
k≤n 

≤ 3 max P(|Sk| ≥ α). 
k≤n 

Now we can prove Lemma 2. 

Proof of Lemma 2. Applying Etemadi’s Inequality 
√ √ 

P(max |Sk| ≥ λσ n) ≤ 3 max P(|Sk| ≥ (1/3)λσ n) 
k≤n k≤n 
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Fix E > 0. Let Φ denote the cumulative standard normal distribution. Find λ0 
large enough so that 2λ2(1 − Φ(λ/3)) < E/3 for all λ ≥ λ0. Fix any such λ. 
By the CLT we can find n0 = n0(λ) large enough so that 

√ 
P(|Sn| ≥ (1/3)λσ n) ≤ 2(1 − Φ(λ/3)) + E/(3λ2) 

√ 
for all n ≥ n0, implying λ2P(|Sn| ≥ (1/3)λσ n) ≤ 2E/3. 

Now fix any n ≥ 27n0/E and any k ≤ n. If k ≥ n0, then from the derived 
bound we have 

√ √ 
λ2P(|Sk| ≥ (1/3)λσ n) ≤ λ2P(|Sk| ≥ (1/3)λσ k) ≤ 2E/3. 

On the other hand, if k ≤ n0 then 

√ λ2E[S2] σ2kkλ2P(|Sk| ≥ (1/3)λσ n) ≤ = ≤ E/3. 
(λ2/9)σ2n (1/9)σ2n 

We conclude that for all n ≥ 27n0/E, 
√ 

λ2 max P(|Sk| ≥ (1/3)λσ n) ≤ E/3, 
1≤k≤n 

from which we obtain 
√ 

λ2 lim sup P(max |Sk| ≥ λσ n) ≤ E 
n k≤n 

Since E > 0 was arbitrary, we obtain the result. 

The next result which we also do not prove says that the property (3) implies 
tightness of the sequence of measures Pn on C[0, T ]. 

Lemma 3. The following convergence holds for every E > 0. 

lim lim sup P(wNn (δ) ≥ E) = 0. (4)
δ→0 n→∞ 

As a result the sequence of measures Pn is tight. 

Proof. Observe that 

| Xk|i≤k≤j
wNn (δ) ≤ max √ . 

i≤j≤nT :j−i≤δn σ n 

Exercise 1. Use this to finish the proof of the lemma. Hint: partition interval 
[0, T ] into length δ intervals and use Lemma 2. 
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Let us now see how Lemma 2 implies tightness. We use characterization
given by Proposition 1. First for any positive a, Pn(|x(0)| ≥ a) = P(|Nn(0)| >
0) = 0 since Nn(0) = 0. Now Pn(wx(δ) > ε) = P(wNn(δ) > ε). From the
first part of the lemma we know that the double convergence (4) holds. This
means that condition (ii) of Proposition 1 holds as well.

We now return to the construction of Wiener measure. Lemma 3 implies
that the sequence of probability measures Pn on C[0, T ] is tight. Therefore, by
Prohorov’s Theorem, it contains a weakly convergent subsequence Pn(k) ⇒ P∗.

Proposition 3. P∗ satisfies the property of the Wiener measure.

Proof. Since P∗ is defined on the space of continuous functions, then conti-
nuity of every sample is immediate. We need to establish independence of
increments and the fact that increments are stationary Gaussian. Thus we fix
0 ≤ t1 < · · · < tk and y1, . . . , yk ∈ Rk. To preserve the continuity, we still de-
note elements of C[0, T ] by x, x(t) or x(ω, t) whereas before we used notations
ω,B(ω), B(t, ω).

Consider the random vector πt1(Nn) = Nn(t1). This is simply the random
variable

S (bnt1 ω) X ω)
√c + (nt1 − b

nt1 +1(
nt1c)

b c

σ n σ
√
n

The second term in the sum converges to zero in probability. The first term we
rewrite as

S (ω)
√

bnt c b
σ
√1 nt1c
b nt1

√ .
c n

and by CLT it converges to a normal N(0, t1) distribution. Similarly, consider

X (ω
N (t )− m

N (t ) =

∑
nt ) X (ω)

1<m
1 √ nt

n 2 n
≤nt2 +1

+ (nt2
b

n
− c) 2

2
c

σ
bnt

σ
√
n

X
− nt

(nt 1 +1(ω)
1 − bnt1c)

b c

σ
√
n

Again by CLT we see that it converges to normal N(0, t2 − t1) distribu-
tion. Moreover, the joint distribution of (Nn(t1), Nn(t2) − Nn(t1)) converges
to a joint distribution of two independent normals with zero mean and vari-
ances t1, t2 − t1. Namely, the (Nn(t1), Nn(t2)) converges in distribution to



(Z1, Z1 + Z2), where Z1, Z2 are independent normal random variables with 
zero mean and variances t1, t2 − t1. 

By a similar token, we see that the distribution of the random vector 
πt1,...,tk (Nn) = (Nn(t1), Nn(t2), . . . , Nn(tk)) converges in distribution to (Z1, Z1+ 
Z2, . . . , Z1 + · · · + Zk) where Zj , 1 ≤ j ≤ k are independent zero mean normal 
random variables with variances t1, t2 − t1, . . . , tk − tk−1. 

On the other hand the distribution of πt1,...,tk (Nn) is 

π−1 π−1Pn t1,...,tk 
= Pi.i.d.ψn 

−1 
t1,...,tk 

. 

Since Pn(k) ⇒ P∗ and π is continuous, then, applying mapping theorem (The
orem 1) we conclude that Pn(k)π

−1 ⇒ P∗π−1 . Combining, these two t1,...,tk t1,...,tk 

facts, we conclude that the probability measure P∗π−1 is the probability t1,...,tk 
measure of (Z1, Z1 + Z2, . . . , Z1 + · · · + Zk) (where again Zj are indepen
dent normal, etc ...). What does this mean? This means that when we select 
x ∈ C[0, T ] according to the probability measure P∗ and look at its projection 
πt1,...,tk (x) = (x(t1), . . . , x(tk)), the probability distribution of this random 
vector is the distribution of (Z1, Z1 + Z2, . . . , Z1 + · · ·+ Zk). This means that x 
has independent increments with zero mean Gaussian distribution and variances 
t1, t2 − t1, . . . , tk − tk−1. This is precisely the property we needed to establish 
for P∗ in order to argue that it is indeed Wiener measure. 

This concludes the proof of Proposition 3 – the fact that P∗ is the Weiner 
measure. 

We also need to show that the convergence Pn ⇒ P holds. For this purpose 
we will show that P∗ is unique. In this case the convergence holds. Indeed, 
suppose otherwise, there exists a subsequence n(k) such that Pn(k)  ⇒ P∗. Then 
we can find a bounded continuous r.v. X , such that EPn(k) X  ⇒ EP∗ X . Then we 
can find E0 and a subsequence n(ki) of n(k) such that |EPn(ki) X − EP∗ X| ≥ E0 
for all i. By tightness we can find a further subsequence n(kij ) of n(ki) which 
converges weakly to some limiting probability measure P̃. But we have seen 
that every such weak limit has to be a Wiener measure which is unique. Namely 
P̃ = P∗. This is a contradiction since |EP X − EP∗ X| ≥ E0. 

n(kij ) 

It remains to show the uniqueness of Wiener measure. This follows again 
from the fact that the Kolmogorov σ-field coincides with the Borel σ-field on 
C[0, T ]. But the properties of Wiener measure (independent increments with 
variances given by the length of the time increments) uniquely define probabil
ity on generating sets obtained via projections πt1,...,tk : C[0, T ] → Rk . This 
concludes the proof of uniqueness. 
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4	 Applications 

Theorem 4 has applications beyond the existence of Wiener measure. Here is 
one of them. 

Theorem 5. The following convergence holds 

max1≤k≤n Sk√ ⇒ sup B(t)	 (5)
σ	 n 0≤t≤T 

where B is the standard Brownian motion. As a result, for every y 

max1≤k≤n Sk
lim P( √ ≥ y) = 2(1 − Φ(y)), (6) 
n σ n 

where Φ is standard normal distribution. 

Proof. The function g(x) = sup0≤t≤T x(t) is a continuous function on C[0, T ] 
(check this). Since by Theorem 4, Pn ⇒ P∗ then, by Mapping Theorem, 
g(Nn) ⇒ g(B), where B is a standard Brownian motion – random sample 

max1≤k≤n Skfrom the Wiener measure P∗ . But g(Nn) = sup0≤t≤T Nn(t) = √ .
σ n 

We conclude that (5) holds. To prove the second part we note that the set 
A = {x ∈ C[0, T ] : sup0≤t≤T x(t) = y} has P∗(A) = 0 – recall that the 
maximum sup0≤t≤T B(t) of a Brownian motion has density. Also note that A 
is the boundary of the set {x : sup0≤t≤T x(t) ≤ y}. Therefore by Portmentau 
theorem, (6) holds. 

5	 Additional reading materials 

• Billingsley [1] Chapter 2, Section 8. 
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