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Large deviations Theory. Cramér’s Theorem 
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Cramér’s Theorem 

We have established in the previous lecture that under some assumptions on 
the Moment Generating Function (MGF) M(θ), an i.i.d. sequence of random 
variables Xi, 1 ≤ i ≤ n with mean µ satisfies P(Sn ≥ a) ≤ exp(−nI(a)),;−1where Sn = n Xi, and I(a) £ supθ(θa− log M(θ)) is the Legendre 1≤i≤n 
transform. The function I(a) is also commonly called the rate function in the 
theory of Large Deviations. The bound implies 

log P(Sn ≥ a)
lim sup ≤ −I(a), 

nn 

and we have indicated that the bound is tight. Namely, ideally we would like to 
establish the limit 

log P(Sn ≥ a)
lim sup = −I(a), 

nn 

Furthermore, we might be interested in more complicated rare events, beyond 
the interval [a, ∞). For example, the likelihood that P(Sn ∈ A) for some set 
A ⊂ R not containing the mean value µ. The Large Deviations theory says that 
roughly speaking 

lim 
1 
P(Sn ∈ A) = − inf I(x), (1) 

n→∞ n x∈A 
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but unfortunately this statement is not precisely correct. Consider the following 
example. Let X be an integer-valued random variable, and A = {m : m ∈ p 
Z, p is odd prime.}. Then for prime n, we have P(Sn ∈ A) = 1; but for n = 2k , 

log P (Sn∈A)we have P (Sn ∈ A) = 0. As a result, the limit limn→∞ in this case n 
does not exist. 

The sense in which the identity (1) is given by the Cramér’s Theorem below. 

Theorem 1 (Cram´ Given a sequence of i.i.d. real valued raner’s Theorem). 
dom variables Xi, i ≥ 1 with a common moment generating function M(θ) = 
E[exp(θX1)] the following holds: 

(a) For any closed set F ⊆ R, 

1 
lim sup log P(Sn ∈ F ) ≤ − inf I(x), 
n→∞ n x∈F 

(b) For any open set U ⊆ R, 

1 
lim inf log P(Sn ∈ U) ≥ − inf I(x). 
n→∞ n x∈U 

We will prove the theorem only for the special case when D(M) = R 
(namely, the MGF is finite everywhere) and when the support of X is entire 
R. Namely for every K > 0, P(X > K) > 0 and P(X < −K) > 0. For 
example a Gaussian random variable satisfies this property. 

To see the power of the theorem, let us apply it to the tail of Sn. In the 
following section we will establish that I(x) is a non-decreasing function on the 
interval [µ, ∞). Furthermore, we will establish that if it is finite in some interval 
containing x it is also continuous at x. Thus fix a and suppose I is finite in 
an interval containing a. Taking F to be the closed set [a, ∞) with a > µ, we 
obtain from the 

1 
lim sup log P(Sn ∈ [a, ∞)) ≤ − min I(x) 
n→∞ n x≥a 

= −I(a). 

Applying the second part of Cramér’s Theorem, we obtain 

1 1 
lim inf log P(Sn ∈ [a, ∞)) ≤ lim inf log P(Sn ∈ (a, ∞)) 
n→∞ n n→∞ n  

≥ − inf I(x)  
x>a 

= −I(a). 
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Thus in this special case indeed the large deviations limit exists:
 

1 
lim log P(Sn ≥ a) = −I(a). 
n→∞ n 

The limit is insensitive to whether the inequality is strict, in the sense that we 
also have 

1 
lim log P(Sn > a) = −I(a). 
n→∞ n 

Properties of the rate function I 

Before we prove this theorem, we will need to establish several properties of 
I(x) and M(θ). 

Proposition 1. The rate function I satisfies the following properties 

(a)	 I is a convex non-negative function satisfying I(µ) = 0. Furthermore, it is 
an increasing function on [µ, ∞) and a decreasing function on (−∞, µ]. 
Finally I(x) = supθ≥0(θx − log M(θ)) for every x ≥ µ and I(x) = 
supθ≤0(θx − log M(θ)) for every x ≤ µ. 

(b) Suppose in addition that D(M) = R and the support of X1 is R. Then, 
I is a finite continuous function on R. Furthermore, for every x ∈ R we 
have I(x) = θ0x − log M(θ0), for some θ0 = θ0(x) satisfying 

Ṁ(θ0) 
x = .	 (2)

M(θ0) 

Proof of part (a). Convexity is due to the fact that I(x) is point-wise supremum. 
Precisely, consider λ ∈ (0, 1) 

I(λx + (1 − λ)y) = sup[θ(λx + (1 − x)y) − log M(θ)] 
θ 

= sup[λ(x − log M(θ)) + (1 − λ)(y − log M(θ))] 
≤λ sup(x − log M(θ)) + (1 − λ) sup (y − log M(θ)) 

θ	 θ 

=λI(x) + (1 − λ)I(y). 

This establishes the convexity. Now since M(0) = 1 then I(x) ≥ 0 · x − 
log M(0) = 0 and the non-negativity is established. By Jensen’s inequality, we 
have that 

M(θ) = E[exp(θX1)] ≥ exp(θE[X1]) = exp(θµ). 
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Therefore, log M(θ) ≥ θµ, namely, θµ − log M(θ) ≤ 0, implying I(µ) = 0 =  
minx∈R I(x). 

Furthermore, if x > µ, then for θ < 0 we have θx − log M(θ) ≤ θ(x − 
µ) < 0. This means that supθ(θx − log M(θ)) must be equal to supθ≥0(θx − 
log M(θ)). Similarly we show that when x < µ, we have I(x) = supθ≤0(θx − 
log M(θ)). 

Next, the monotonicity follows from convexity. Specifically, the existence 
of real numbers µ ≤ x < y such that I(x) > I(y) ≥ I(µ) = 0 violates 
convexity (check). This completes the proof of part (a). 

Proof of part (b). For any K > 0 we have    
log M(θ) log exp(θx) dP (x)

lim inf = lim inf 
θ→∞ θ θ→∞ θ  ∞  

1 ≥ lim inf log exp(θx) dP (x)
θ→∞ θ K 

1 ≥ lim inf log (exp(Kθ)P([K, ∞])) 
θ→∞ θ 

1 
= K + lim inf log P([K, ∞]) 

θ→∞ θ 
= K (since supp(X1) = R, we have P([K, ∞)) > 0.) 

Since K is arbitrary, 
1 

lim inf log M(θ) = ∞ 
θ→∞ θ 

Similarly, 
1 

lim inf − log M(θ) = ∞ 
θ→−∞ θ 

Therefore, 

1 
lim θx − log M(θ) = lim θ(x − log M(θ)) → −∞ 
θ→∞ θ→∞ θ 

Therefore, for each x as |θ| → ∞, we have that 

lim θx − log M(θ) = −∞ 
|θ|→∞ 

From the previous lecture we know that M(θ) is differentiable (hence continu
ous). Therefore the supremum of θx − log M(θ) is achieved at some finite value 
θ0 = θ0(x), namely, 

I(x) = θ0x − log M(θ0) < ∞, 
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where θ0 is found by setting the derivative of θx − log M(θ) to zero. Namely, 
θ0 must satisfy (2). Since I is a finite convex function on R it is also continuous 
(verify this). This completes the proof of part (b). 

Proof of Cramér’s Theorem 

Now we are equipped to proving the Cramér’s Theorem. 

Proof of Cramer’s Theorem. Part (a). ´ Fix a closed set F ⊂ R. Let α+ = 
min{x ∈ [µ, +∞) ∩ F } and α− = max{x ∈ (−∞, µ] ∩ F }. Note that α+ and 
α− exist since F is closed. If α+ = µ then I(µ) = 0 = minx∈R I(x). Note 
that log P(Sn ∈ F ) ≤ 0, and the statement (a) follows trivially. Similarly, if 
α− = µ, we also have statement (a). Thus, assume α− < µ < α+. Then 

P (Sn ∈ F ) ≤ P (Sn ∈ [α+, ∞)) + P (Sn ∈ (−∞, α−]) 

Define 
xn £ P (Sn ∈ [α+, ∞)) , yn £ P (Sn ∈ (−∞, α−]) . 

We already showed that 

P (Sn ≥ α+) ≤ exp(−n(θα+ − log M(θ))), ∀θ ≥ 0. 

from which we have 
1 
log P (Sn ≥ α+) ≤− (θα+ − log M(θ)), ∀θ ≥ 0. 

n 
1 ⇒ log P (Sn ≥ α+) ≤− sup(θα+ − log M(θ)) = −I(α+) 
n θ≥0 

The second equality in the last equation is due to the fact that the supremum 
in I(x) is achieved at θ ≥ 0, which was established as a part of Proposition 1. 
Thus, we have 

lim sup 
n 

1 
n 
log P (Sn ≥ α+) ≤ −I(α+) (3) 

Similarly, we have 

lim sup 
n 

1 
n 
log P (Sn ≤ α−) ≤ −I(α−) (4) 

Applying Proposition 1 we have I(α+) = minx≥α+ I(x) and I(α−) = minx≤α− I(x). 
Thus 

min{I(α+), I(α−)} = inf I(x) (5) 
x∈F 
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From (3)-(5), we have that 
1 1 

lim sup log xn ≤ − inf I(x), lim sup log yn ≤ − inf I(x), (6) 
n n x∈F n n x∈F 

which implies that 

1 
lim sup log(xn + yn) ≤ − inf I(x). 

n n x∈F 

(you are asked to establish the last implication as an exercise). We have estab
lished 

1 
lim sup log P (Sn ∈ F ) ≤ − inf I(x) (7) 

n n x∈F 

Proof of the upper bound in statement (a) is complete. 

Proof of Cram´ Fix E > 0 ander’s Theorem. Part (b). Fix an open set U ⊂ R. 
find y such that I(y) ≤ infx∈U ((x). It is sufficient to show that 

1 
lim inf P (Sn ∈ U) ≥ −I(y), (8) 
n→∞ n 

since it will imply 

1 
lim inf P (Sn ∈ U) ≥ − inf I(x) + E, 
n→∞ n x∈U 

and since E > 0 was arbitrary, it will imply the result. 
Thus we now establish (8). Assume y > µ. The case y < µ is treated 

similarly. Find θ0 = θ0(y) such that 

I(y) = θ0y − log M(θ0). 

Such θ0 exists by Proposition 1. Since y > µ, then again by Proposition 1 we 
may assume θ0 ≥ 0. 

We will use the change-of-measure technique to obtain the cover bound. For 
this, consider a new random variable let Xθ0 be a random variable defined by 

z1
P(Xθ0 ≤ z) = exp(θ0x) dP (x)

M(θ0) −∞ 

Now, 
∞1

E[Xθ0 ] = x exp(θ0x) dP (x)
M(θ0) −∞ 

Ṁ(θ0) 
= 

M(θ0) 
= y, 
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where the second equality was established in the previous lecture, and the last 
equality follows by the choice of θ0 and Proposition 1. Since U is open we can 
find δ > 0 be small enough so that (y − δ, y + δ) ⊂ U . Thus, we have 

P(Sn ∈ U) 
≥ P(Sn ∈ (y − δ, y + δ)) 

= dP (x1) · · · dP (xn) 
| 1 xi−y|<δ 
n   

= exp(−θ0 xi)M
n(θ0) M−1(θ0) exp(θ0xi)dP (xi). 

| 1 xi−y|<δ 
n i 1≤i≤n 

(9) 

Since θ0 is non-negative, we obtain a bound 

P(Sn ∈ (y − δ, y + δ))  
≥ exp(−θ0yn − θ0nδ)Mn(θ0) M−1(θ0) exp(θ0xi)dP (xi) 

| 1 xi−y|<δ
n 1≤i≤n 

However, we recognize the integral on the right-hand side of the inequality ;−1above as the that the average n Yi of n i.i.d. random variables Yi, 1 ≤1≤i≤n 
i ≤ n distributed according to the distribution of Xθ0 belongs to the interval 
(y − δ, y + δ). Recall, however that E[Yi] = E[Xθ0 ] = y (this is how Xθ0 was 
designed). Thus by the Weak Law of Large Numbers, this probability converges 
to unity. As a result  

lim n −1 log M−1(θ0) exp(θ0xi)dP (xi) = 0. n→∞ | 1 xi−y|<δ
n 1≤i≤n 

We obtain 

lim inf n −1 log P(Sn ∈ U) ≥ −θ0y − θ0δ + log M(θ0) 
n→∞ 

= −I(y) − θ0δ. 

Recalling that θ0 depends on y only and sending δ to zero, we obtain (8). This 
completes the proof of part (b). 
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