MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Large deviations Theory. Cramér's Theorem

Content.

1. Cramér's Theorem.
2. Rate function and properties.
3. Change of measure technique.

1 Cramér's Theorem

We have established in the previous lecture that under some assumptions on the Moment Generating Function (MGF) $M(\theta)$, an i.i.d. sequence of random variables $X_{i}, 1 \leq i \leq n$ with mean μ satisfies $\mathbb{P}\left(S_{n} \geq a\right) \leq \exp (-n I(a))$, where $S_{n}=n^{-1} \sum_{1 \leq i \leq n} X_{i}$, and $I(a) \triangleq \sup _{\theta}(\theta a-\log M(\theta))$ is the Legendre transform. The function $I(a)$ is also commonly called the rate function in the theory of Large Deviations. The bound implies

$$
\limsup _{n} \frac{\log \mathbb{P}\left(S_{n} \geq a\right)}{n} \leq-I(a)
$$

and we have indicated that the bound is tight. Namely, ideally we would like to establish the limit

$$
\limsup _{n} \frac{\log \mathbb{P}\left(S_{n} \geq a\right)}{n}=-I(a)
$$

Furthermore, we might be interested in more complicated rare events, beyond the interval $[a, \infty)$. For example, the likelihood that $\mathbb{P}\left(S_{n} \in A\right)$ for some set $A \subset \mathbb{R}$ not containing the mean value μ. The Large Deviations theory says that roughly speaking

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{P}\left(S_{n} \in A\right)=-\inf _{x \in A} I(x) \tag{1}
\end{equation*}
$$

but unfortunately this statement is not precisely correct. Consider the following example. Let X be an integer-valued random variable, and $A=\left\{\frac{m}{p}: m \in\right.$ \mathcal{Z}, p is odd prime. $\}$. Then for prime n, we have $\mathbb{P}\left(S_{n} \in A\right)=1$; but for $n=2^{k}$, we have $P\left(S_{n} \in A\right)=0$. As a result, the limit $\lim _{n \rightarrow \infty} \frac{\log P\left(S_{n} \in A\right)}{n}$ in this case does not exist.

The sense in which the identity (1) is given by the Cramér's Theorem below.
Theorem 1 (Cramér's Theorem). Given a sequence of i.i.d. real valued random variables $X_{i}, i \geq 1$ with a common moment generating function $M(\theta)=$ $E\left[\exp \left(\theta X_{1}\right)\right]$ the following holds:
(a) For any closed set $F \subseteq \mathbb{R}$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \in F\right) \leq-\inf _{x \in F} I(x)
$$

(b) For any open set $U \subseteq \mathbb{R}$,

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \in U\right) \geq-\inf _{x \in U} I(x) .
$$

We will prove the theorem only for the special case when $\mathcal{D}(M)=\mathbb{R}$ (namely, the MGF is finite everywhere) and when the support of X is entire \mathbb{R}. Namely for every $K>0, \mathbb{P}(X>K)>0$ and $\mathbb{P}(X<-K)>0$. For example a Gaussian random variable satisfies this property.

To see the power of the theorem, let us apply it to the tail of S_{n}. In the following section we will establish that $I(x)$ is a non-decreasing function on the interval $[\mu, \infty)$. Furthermore, we will establish that if it is finite in some interval containing x it is also continuous at x. Thus fix a and suppose I is finite in an interval containing a. Taking F to be the closed set $[a, \infty)$ with $a>\mu$, we obtain from the

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \in[a, \infty)\right) & \leq-\min _{x \geq a} I(x) \\
& =-I(a)
\end{aligned}
$$

Applying the second part of Cramér's Theorem, we obtain

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \in[a, \infty)\right) & \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \in(a, \infty)\right) \\
& \geq-\inf _{x>a} I(x) \\
& =-I(a)
\end{aligned}
$$

Thus in this special case indeed the large deviations limit exists:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq a\right)=-I(a)
$$

The limit is insensitive to whether the inequality is strict, in the sense that we also have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n}>a\right)=-I(a)
$$

2 Properties of the rate function I

Before we prove this theorem, we will need to establish several properties of $I(x)$ and $M(\theta)$.
Proposition 1. The rate function I satisfies the following properties
(a) I is a convex non-negative function satisfying $I(\mu)=0$. Furthermore, it is an increasing function on $[\mu, \infty)$ and a decreasing function on $(-\infty, \mu]$. Finally $I(x)=\sup _{\theta \geq 0}(\theta x-\log M(\theta))$ for every $x \geq \mu$ and $I(x)=$ $\sup _{\theta \leq 0}(\theta x-\log M(\bar{\theta}))$ for every $x \leq \mu$.
(b) Suppose in addition that $\mathcal{D}(M)=\mathbb{R}$ and the support of X_{1} is \mathbb{R}. Then, I is a finite continuous function on \mathbb{R}. Furthermore, for every $x \in \mathbb{R}$ we have $I(x)=\theta_{0} x-\log M\left(\theta_{0}\right)$, for some $\theta_{0}=\theta_{0}(x)$ satisfying

$$
\begin{equation*}
x=\frac{\dot{M}\left(\theta_{0}\right)}{M\left(\theta_{0}\right)} . \tag{2}
\end{equation*}
$$

Proof of part (a). Convexity is due to the fact that $I(x)$ is point-wise supremum. Precisely, consider $\lambda \in(0,1)$

$$
\begin{aligned}
I(\lambda x+(1-\lambda) y) & =\sup _{\theta}[\theta(\lambda x+(1-x) y)-\log M(\theta)] \\
& =\sup ^{[\lambda(x-\log M(\theta))+(1-\lambda)(y-\log M(\theta))]} \\
& \leq \lambda \sup _{\theta}(x-\log M(\theta))+(1-\lambda) \sup _{\theta}(y-\log M(\theta)) \\
& =\lambda I(x)+(1-\lambda) I(y) .
\end{aligned}
$$

This establishes the convexity. Now since $M(0)=1$ then $I(x) \geq 0 \cdot x-$ $\log M(0)=0$ and the non-negativity is established. By Jensen's inequality, we have that

$$
M(\theta)=\mathbb{E}\left[\exp \left(\theta X_{1}\right)\right] \geq \exp \left(\theta \mathbb{E}\left[X_{1}\right]\right)=\exp (\theta \mu)
$$

Therefore, $\log M(\theta) \geq \theta \mu$, namely, $\theta \mu-\log M(\theta) \leq 0$, implying $I(\mu)=0=$ $\min _{x \in \mathbb{R}} I(x)$.

Furthermore, if $x>\mu$, then for $\theta<0$ we have $\theta x-\log M(\theta) \leq \theta(x-$ $\mu)<0$. This means that $\sup _{\theta}(\theta x-\log M(\theta))$ must be equal to $\sup _{\theta \geq 0}(\theta x-$ $\log M(\theta))$. Similarly we show that when $x<\mu$, we have $I(x)=\sup _{\theta \leq 0}(\theta x-$ $\log M(\theta))$.

Next, the monotonicity follows from convexity. Specifically, the existence of real numbers $\mu \leq x<y$ such that $I(x)>I(y) \geq I(\mu)=0$ violates convexity (check). This completes the proof of part (a).

Proof of part (b). For any $K>0$ we have

$$
\begin{aligned}
\liminf _{\theta \rightarrow \infty} \frac{\log M(\theta)}{\theta} & =\liminf _{\theta \rightarrow \infty} \frac{\log \left(\int \exp (\theta x) \mathrm{d} P(x)\right)}{\theta} \\
& \geq \liminf _{\theta \rightarrow \infty} \frac{1}{\theta} \log \left(\int_{K}^{\infty} \exp (\theta x) \mathrm{d} P(x)\right) \\
& \geq \liminf _{\theta \rightarrow \infty} \frac{1}{\theta} \log (\exp (K \theta) \mathbb{P}([K, \infty])) \\
& =K+\liminf _{\theta \rightarrow \infty} \frac{1}{\theta} \log \mathbb{P}([K, \infty]) \\
& =K\left(\text { since } \operatorname{supp}\left(X_{1}\right)=\mathbb{R}, \text { we have } \mathbb{P}([K, \infty))>0 .\right)
\end{aligned}
$$

Since K is arbitrary,

$$
\liminf _{\theta \rightarrow \infty} \frac{1}{\theta} \log M(\theta)=\infty
$$

Similarly,

$$
\liminf _{\theta \rightarrow-\infty}-\frac{1}{\theta} \log M(\theta)=\infty
$$

Therefore,

$$
\lim _{\theta \rightarrow \infty} \theta x-\log M(\theta)=\lim _{\theta \rightarrow \infty} \theta\left(x-\frac{1}{\theta} \log M(\theta)\right) \rightarrow-\infty
$$

Therefore, for each x as $|\theta| \rightarrow \infty$, we have that

$$
\lim _{|\theta| \rightarrow \infty} \theta x-\log M(\theta)=-\infty
$$

From the previous lecture we know that $M(\theta)$ is differentiable (hence continuous). Therefore the supremum of $\theta x-\log M(\theta)$ is achieved at some finite value $\theta_{0}=\theta_{0}(x)$, namely,

$$
I(x)=\theta_{0} x-\log M\left(\theta_{0}\right)<\infty,
$$

where θ_{0} is found by setting the derivative of $\theta x-\log M(\theta)$ to zero. Namely, θ_{0} must satisfy (2). Since I is a finite convex function on \mathbb{R} it is also continuous (verify this). This completes the proof of part (b).

3 Proof of Cramér's Theorem

Now we are equipped to proving the Cramér's Theorem.
Proof of Cramér's Theorem. Part (a). Fix a closed set $F \subset \mathbb{R}$. Let $\alpha_{+}=$ $\min \{x \in[\mu,+\infty) \cap F\}$ and $\alpha_{-}=\max \{x \in(-\infty, \mu] \cap F\}$. Note that α_{+}and α_{-}exist since F is closed. If $\alpha_{+}=\mu$ then $I(\mu)=0=\min _{x \in \mathbb{R}} I(x)$. Note that $\log \mathbb{P}\left(S_{n} \in F\right) \leq 0$, and the statement (a) follows trivially. Similarly, if $\alpha_{-}=\mu$, we also have statement (a). Thus, assume $\alpha_{-}<\mu<\alpha_{+}$. Then

$$
\mathbb{P}\left(S_{n} \in F\right) \leq \mathbb{P}\left(S_{n} \in\left[\alpha_{+}, \infty\right)\right)+\mathbb{P}\left(S_{n} \in\left(-\infty, \alpha_{-}\right]\right)
$$

Define

$$
x_{n} \triangleq \mathbb{P}\left(S_{n} \in\left[\alpha_{+}, \infty\right)\right), y_{n} \triangleq \mathbb{P}\left(S_{n} \in\left(-\infty, \alpha_{-}\right]\right)
$$

We already showed that

$$
\mathbb{P}\left(S_{n} \geq \alpha_{+}\right) \leq \exp \left(-n\left(\theta \alpha_{+}-\log M(\theta)\right)\right), \forall \theta \geq 0
$$

from which we have

$$
\begin{aligned}
& \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq \alpha_{+}\right) \leq-\left(\theta \alpha_{+}-\log M(\theta)\right), \forall \theta \geq 0 . \\
\Rightarrow & \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq \alpha_{+}\right) \leq-\sup _{\theta \geq 0}\left(\theta \alpha_{+}-\log M(\theta)\right)=-I\left(\alpha_{+}\right)
\end{aligned}
$$

The second equality in the last equation is due to the fact that the supremum in $I(x)$ is achieved at $\theta \geq 0$, which was established as a part of Proposition 1. Thus, we have

$$
\begin{equation*}
\underset{n}{\limsup } \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq \alpha_{+}\right) \leq-I\left(\alpha_{+}\right) \tag{3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\underset{n}{\limsup } \frac{1}{n} \log \mathbb{P}\left(S_{n} \leq \alpha_{-}\right) \leq-I\left(\alpha_{-}\right) \tag{4}
\end{equation*}
$$

Applying Proposition 1 we have $I\left(\alpha_{+}\right)=\min _{x \geq \alpha_{+}} I(x)$ and $I\left(\alpha_{-}\right)=\min _{x \leq \alpha_{-}} I(x)$. Thus

$$
\begin{equation*}
\min \left\{I\left(\alpha_{+}\right), I\left(\alpha_{-}\right)\right\}=\inf _{x \in F} I(x) \tag{5}
\end{equation*}
$$

From (3)-(5), we have that

$$
\begin{equation*}
\limsup _{n} \frac{1}{n} \log x_{n} \leq-\inf _{x \in F} I(x), \limsup _{n} \frac{1}{n} \log y_{n} \leq-\inf _{x \in F} I(x), \tag{6}
\end{equation*}
$$

which implies that

$$
\limsup _{n} \frac{1}{n} \log \left(x_{n}+y_{n}\right) \leq-\inf _{x \in F} I(x)
$$

(you are asked to establish the last implication as an exercise). We have established

$$
\begin{equation*}
\limsup _{n} \frac{1}{n} \log \mathbb{P}\left(S_{n} \in F\right) \leq-\inf _{x \in F} I(x) \tag{7}
\end{equation*}
$$

Proof of the upper bound in statement (a) is complete.
Proof of Cramér's Theorem. Part (b). Fix an open set $U \subset \mathbb{R}$. Fix $\epsilon>0$ and find y such that $I(y) \leq \inf _{x \in U}((x)$. It is sufficient to show that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{n} \mathbb{P}\left(S_{n} \in U\right) \geq-I(y) \tag{8}
\end{equation*}
$$

since it will imply

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \mathbb{P}\left(S_{n} \in U\right) \geq-\inf _{x \in U} I(x)+\epsilon,
$$

and since $\epsilon>0$ was arbitrary, it will imply the result.
Thus we now establish (8). Assume $y>\mu$. The case $y<\mu$ is treated similarly. Find $\theta_{0}=\theta_{0}(y)$ such that

$$
I(y)=\theta_{0} y-\log M\left(\theta_{0}\right)
$$

Such θ_{0} exists by Proposition 1. Since $y>\mu$, then again by Proposition 1 we may assume $\theta_{0} \geq 0$.

We will use the change-of-measure technique to obtain the cover bound. For this, consider a new random variable let $X_{\theta_{0}}$ be a random variable defined by

$$
\mathbb{P}\left(X_{\theta_{0}} \leq z\right)=\frac{1}{M\left(\theta_{0}\right)} \int_{-\infty}^{z} \exp \left(\theta_{0} x\right) \mathrm{d} P(x)
$$

Now,

$$
\begin{aligned}
\mathbb{E}\left[X_{\theta_{0}}\right] & =\frac{1}{M\left(\theta_{0}\right)} \int_{-\infty}^{\infty} x \exp \left(\theta_{0} x\right) \mathrm{d} P(x) \\
& =\frac{\dot{M}\left(\theta_{0}\right)}{M\left(\theta_{0}\right)} \\
& =y
\end{aligned}
$$

where the second equality was established in the previous lecture, and the last equality follows by the choice of θ_{0} and Proposition 1 . Since U is open we can find $\delta>0$ be small enough so that $(y-\delta, y+\delta) \subset U$. Thus, we have

$$
\begin{align*}
\mathbb{P}\left(S_{n}\right. & \in U) \\
& \geq \mathbb{P}\left(S_{n} \in(y-\delta, y+\delta)\right) \\
& =\int_{\left|\frac{1}{n} \sum x_{i}-y\right|<\delta} \mathrm{d} P\left(x_{1}\right) \cdots \mathrm{d} P\left(x_{n}\right) \\
& =\int_{\left|\frac{1}{n} \sum x_{i}-y\right|<\delta} \exp \left(-\theta_{0} \sum_{i} x_{i}\right) M^{n}\left(\theta_{0}\right) \prod_{1 \leq i \leq n} M^{-1}\left(\theta_{0}\right) \exp \left(\theta_{0} x_{i}\right) d P\left(x_{i}\right) . \tag{9}
\end{align*}
$$

Since θ_{0} is non-negative, we obtain a bound

$$
\begin{aligned}
\mathbb{P}\left(S_{n}\right. & \in(y-\delta, y+\delta)) \\
& \geq \exp \left(-\theta_{0} y n-\theta_{0} n \delta\right) M^{n}\left(\theta_{0}\right) \int_{\left|\frac{1}{n} \sum x_{i}-y\right|<\delta} \prod_{1 \leq i \leq n} M^{-1}\left(\theta_{0}\right) \exp \left(\theta_{0} x_{i}\right) d P\left(x_{i}\right)
\end{aligned}
$$

However, we recognize the integral on the right-hand side of the inequality above as the that the average $n^{-1} \sum_{1 \leq i \leq n} Y_{i}$ of n i.i.d. random variables $Y_{i}, 1 \leq$ $i \leq n$ distributed according to the distribution of $X_{\theta_{0}}$ belongs to the interval $(y-\delta, y+\delta)$. Recall, however that $\mathbb{E}\left[Y_{i}\right]=\mathbb{E}\left[X_{\theta_{0}}\right]=y$ (this is how $X_{\theta_{0}}$ was designed). Thus by the Weak Law of Large Numbers, this probability converges to unity. As a result

$$
\lim _{n \rightarrow \infty} n^{-1} \log \int_{\left|\frac{1}{n} \sum x_{i}-y\right|<\delta} \prod_{1 \leq i \leq n} M^{-1}\left(\theta_{0}\right) \exp \left(\theta_{0} x_{i}\right) d P\left(x_{i}\right)=0 .
$$

We obtain

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} n^{-1} \log \mathbb{P}\left(S_{n} \in U\right) & \geq-\theta_{0} y-\theta_{0} \delta+\log M\left(\theta_{0}\right) \\
& =-I(y)-\theta_{0} \delta .
\end{aligned}
$$

Recalling that θ_{0} depends on y only and sending δ to zero, we obtain (8). This completes the proof of part (b).

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

