	MASSACHUSETTS	INSTITUTE O	F TECHNOLOGY
--	---------------	--------------------	--------------

6.265/15.070J	Fall 2013
Lecture 4	9/16/2013

Applications of the large deviation technique

Content.

- 1. Insurance problem
- 2. Queueing problem
- 3. Buffer overflow probability

1 Safety capital for an insurance company

Consider some insurance company which needs to decide on the amount of capital S_0 it needs to hold to avoid the cash flow issue. Suppose the insurance premium per month is a fixed (non-random) quantity C > 0. Suppose the claims are i.i.d. random variable $A_N \ge 0$ for the time $N = 1, 2, \cdots$. Then the capital at time N is $S_N = S_0 + \sum_{n=1}^N (C - A_n)$. The company wishes to avoid the situation where the cash flow S_N is negative. Thus it needs to decide on the capital S_0 so that $\mathbb{P}(\exists N, S_N \le 0)$ is small. Obviously this involves a tradeoff between the "smallness" and the amount S_0 . Let us assume that upper bound $\delta = 0.001$, namely 0.1% is acceptable (in fact this is pretty close to the banking regulation standards). We have

$$\mathbb{P}(\exists N, S_N \le 0) = \mathbb{P}(\min_N S_0 + \sum_{n=1}^N (C - A_n) \le 0)$$
$$= \mathbb{P}(\max_N \sum_{n=1}^N (A_n - C) \ge S_0)$$

If $\mathbb{E}[A_1] \ge C$, we have $\mathbb{P}(\max_N \sum_{n=1}^N (A_n - C) \ge S_0) = 1$. Thus, the interesting case is $\mathbb{E}[A_1] < C$ (negative drift), and the goal is to determine the starting capital S_0 such that

$$\mathbb{P}(\max_{N}\sum_{n=1}^{N}(A_{n}-C)\geq S_{0})\leq\delta.$$

2 Buffer overflow in a queueing system

The following model is a variant of a classical so called GI/GI/1 queueing system. In application to communication systems this queueing system consists of a single server, which processes some C > 0 number of communication packets per unit of time. Here C is a fixed deterministic constant. Let A_n be the random number packets arriving at time n, and Q_n be the queue length at time n (asume $Q_0=0$). By recursion, we have that

$$Q_N = \max(Q_{N-1} + A_N - C, 0)$$

= $\max(Q_{N-2} + A_{N-1} + A_N - 2C, A_N - C, 0)$
= $\max_{1 \le n \le N-1} (\sum_{k=1}^n (A_{N-k} - C), 0)$

Notice, that in distributional sense we have

$$Q_N = \max\left(\max_{1 \le n \le N-1} \left(\sum_{k=1}^n (A_{N-k} - C)\right), 0\right)$$

In steady state, i.e. $N = \infty$, we have

$$Q_{\infty} = \max\left(\max_{n \ge 1} \sum_{k=1}^{n} (A_k - C), 0\right)$$

Our goal is to design the size of the queue length storage (buffer) B, so that the likelihood that the number of packets in the queue exceeds B is small. In communication application this is important since every packet not fitting into the buffer is dropped. Thus the goal is to find buffer size B > 0 such that

$$\mathbb{P}(Q_{\infty} \ge B) \le \delta \Rightarrow \mathbb{P}(\max_{n \ge 1} \sum_{k=1}^{n} (A_k - C) \ge B) \le \delta$$

If $\mathbb{E}[A_1] \ge C$, we have $\mathbb{P}(Q_{\infty} \ge B) = 1$. So the interesting case is $\mathbb{E}[A_1] < C$ (negative drift).

3 Buffer overflow probability

We see that in both situations we need to estimate

$$\mathbb{P}(\max_{n\geq 1}\sum_{k=1}^{n}(A_{k}-C)\geq B).$$

We will do this asymptotically as $B \to \infty$.

Theorem 1. Given an i.i.d. sequence $A_n \ge 0$ for $n \ge 1$ and $C > \mathbb{E}[A_1]$. Suppose

$$M(\theta) = \mathbb{E}[\exp(\theta A)] < \infty, \text{ for some } \theta \in [0, \theta_0).$$

Then

$$\lim_{B \to \infty} \frac{1}{B} \log \mathbb{P}(\max_{n \ge 1} \sum_{k=1}^{n} (A_k - C) \ge B) = -\sup\{\theta > 0 : M(\theta) < \exp(\theta C)\}$$

Observe that since A_n is non-negative, the MGF $\mathbb{E}[\exp(\theta A_n)]$ is finite for $\theta < 0$. Thus it is finite in an interval containing $\theta = 0$, and applying the result of Lecture 2 we can take the derivative of MGF. Then

$$\left. \frac{d}{d\theta} M(\theta) \right|_{\theta=0} = \mathbb{E}[A], \quad \left. \frac{d}{d\theta} \exp(\theta C) \right|_{\theta=0} = C$$

Since $\mathbb{E}[A_n] < C$, then there exists small enough θ so that $M(\theta) < \exp(\theta C)$,

Figure 1: Illustration for the existance of θ such that $M(\theta) < \exp(\theta C)$

and thus the set of $\theta > 0$ for which this is the case is non-empty. (see Figure 1). The theorem says that roughly speaking

$$\mathbb{P}(\max_{n}\sum_{k=1}^{n}(A_{k}-C)\geq B)\sim\exp(-\theta^{*}B),$$

when B is large. Thus given δ select B such that $\exp(-\theta^* B) \leq \delta$, and we can set $B = \frac{1}{\theta^*} \log \frac{1}{\delta}$.

Example. Let A be a random variable uniformly distributed in [0, a] and C = 2. Then, the moment generating function of A is

$$M(\theta) = \int_0^a \exp(\theta t) a^{-1} dt = \frac{\exp(\theta a) - 1}{\theta a}$$

Then

$$\sup\{\theta > 0: M(\theta) \le \exp(\theta C)\} = \sup\{\theta > 0: \frac{\exp(\theta a) - 1}{\theta a} \le \exp(2\theta)\}$$

Case 1: a = 3, we have $\theta^* = \sup\{\theta > 0 : \exp(3\theta) - 1 \le 3\theta \exp(2\theta)\}$, i.e. $\theta^* = 1.54078$.

Case 2: a = 4, we have that $\{\theta > 0 : \exp(3\theta) - 1 \le 3\theta \exp(2\theta)\} = \emptyset$ since $\mathbb{E}[A] = 2 = C$.

Case 3: a = 2, we have that $\{\theta > 0 : \exp(3\theta) - 1 \le 3\theta \exp(2\theta)\} = \mathbb{R}_+$ and thus $\theta^* = \infty$, which implies that $\mathbb{P}(\max_n \sum_{k=1}^n (A_k - C) \ge B) = 0$ by theorem 1.

Proof of Theorem 1. We will first prove an upper bound and then a lower bound. Combining them yields the result. For the upper bound, we have that

$$\mathbb{P}(\max_{n}\sum_{k=1}^{n}(A_{k}-C)\geq B)\leq \sum_{n=1}^{\infty}\mathbb{P}(\sum_{k=1}^{n}(A_{k}-C)\geq B)$$
$$=\sum_{n=1}^{\infty}\mathbb{P}(\frac{1}{n}\sum_{k=1}^{n}A_{k}\geq C+\frac{B}{n})$$
$$\leq \sum_{n=1}^{\infty}\exp(-n(\theta(C+\frac{B}{n})-\log M(\theta)))\ (\theta>0)$$
$$=\exp(-\theta B)\sum_{n\geq 1}\exp(-n(\theta C-\log M(\theta)))$$

Fix any θ such that $\theta C \ge \log M(\theta)$, the inequality above gives

$$\leq \exp(-\theta B) \sum_{n \geq 0} \exp(-n(\theta C - \log M(\theta)))$$
$$= \exp(-\theta B) [1 - \exp(-(\theta C - \log M(\theta)))]^{-1}$$

Simplification of the inequality above gives

$$\frac{1}{B}\log \mathbb{P}(\max_{n}\sum_{k=1}^{n}(A_{k}-C)\geq B)\leq -\theta+\frac{1}{B}\log([1-\exp(-(\theta C-\log M(\theta)))]^{-1})$$

$$\Rightarrow \limsup_{B\to\infty}\frac{1}{B}\log \mathbb{P}(\max_{n}\sum_{k=1}^{n}(A_{k}-C)\geq B)\leq -\theta \text{ for } \forall \theta: M(\theta)<\exp(\theta C)$$

Next, we will derive the lower bound.

$$\mathbb{P}(\max_{n}\sum_{k=1}^{n}(A_{k}-C)\geq B)\geq \mathbb{P}(\sum_{k=1}^{n}(A_{k}-C)\geq B), \forall n$$

Fix a t > 0, then

$$\mathbb{P}(\max_{n} \sum_{k=1}^{n} (A_{k} - C) \ge B) \ge \mathbb{P}(\sum_{k=1}^{\lceil Bt \rceil} (A_{k} - C) \ge B)$$
$$\ge \mathbb{P}\left(\sum_{k=1}^{\lceil Bt \rceil} (A_{k} - C) \ge \frac{\lceil Bt \rceil}{t}\right)$$

Then, we have

$$\begin{split} \liminf_{B} \frac{1}{B} \log \mathbb{P}(\max_{n} \sum_{k=1}^{n} (A_{k} - C) \geq B) \\ \geq \liminf_{B} \frac{1}{B} \log \mathbb{P}\left(\sum_{k=1}^{\lceil Bt \rceil} (A_{k} - C) \geq \frac{\lceil Bt \rceil}{t}\right) \\ = \liminf_{B} \frac{t}{\lceil Bt \rceil} \log \mathbb{P}\left(\sum_{k=1}^{\lceil Bt \rceil} (A_{k} - C) \geq \frac{\lceil Bt \rceil}{t}\right) \\ = t \liminf_{n} \frac{1}{n} \log \mathbb{P}(\sum_{k=1}^{n} (A_{k} - C) \geq \frac{n}{t}) \\ = t \liminf_{n} \frac{1}{n} \log \mathbb{P}(\frac{1}{n} \sum_{k=1}^{n} A_{k} \geq C + \frac{1}{t}) \\ \geq -t \inf_{x > C + \frac{1}{t}} I(x) \quad \text{(by Cramer's theorem.)} \\ \geq -\inf_{t > 0} t \inf_{x > C + \frac{1}{t}} I(x) \quad \text{(since we can choose an arbitrary positive } t.) \quad (1) \end{split}$$

We claim that

$$-\inf_{t>0}t\inf_{x>C+\frac{1}{t}}I(x)=-\inf_{t>0}tI(C+\frac{1}{t})$$

Indeed, let $x^* = \inf x : I(x) = \infty$ (possibly $x^* = \infty$). If $x^* \leq C$, then $I(C + \frac{1}{t}) = \infty$. Suppose $C < x^*$. If t is such that $C + \frac{1}{t} \geq x^*$, then $\inf_{x > C + \frac{1}{t}} I(x) = \infty$. Therefore it does not make sense to consider such t. Now for $c + \frac{1}{t} < x^*$,

we have I is convex non-decreasing and finite on $[E[A_1], x^*)$. Therefore it is continuous on $[E[A_1], x^*)$, which gives that

$$\inf_{x>C+\frac{1}{t}}I(x) = I(C+\frac{1}{t})$$

and the claim follows. Thus, we obtain

$$\liminf_{B \to \infty} \frac{1}{B} \log \mathbb{P}(\max_{n} \sum_{k=1}^{n} (A_k - C) \ge B) \ge -\inf_{t>0} tI(C + \frac{1}{t})$$

Exercise in HW 2 shows that $\sup\{\theta > 0 : M(\theta) < \exp(C\theta)\} = \inf_{t>0} tI(C + \frac{1}{t}).$

_	-	

15.070J / 6.265J Advanced Stochastic Processes Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.