MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Applications of the large deviation technique

Content.

1. Insurance problem
2. Queueing problem
3. Buffer overflow probability

1 Safety capital for an insurance company

Consider some insurance company which needs to decide on the amount of capital S_{0} it needs to hold to avoid the cash flow issue. Suppose the insurance premium per month is a fixed (non-random) quantity $C>0$. Suppose the claims are i.i.d. random variable $A_{N} \geq 0$ for the time $N=1,2, \cdots$. Then the capital at time N is $S_{N}=S_{0}+\sum_{n=1}^{N}\left(C-A_{n}\right)$. The company wishes to avoid the situation where the cash flow S_{N} is negative. Thus it needs to decide on the capital S_{0} so that $\mathbb{P}\left(\exists N, S_{N} \leq 0\right)$ is small. Obviously this involves a tradeoff between the "smallness" and the amount S_{0}. Let us assume that upper bound $\delta=0.001$, namely 0.1% is acceptable (in fact this is pretty close to the banking regulation standards). We have

$$
\begin{aligned}
\mathbb{P}\left(\exists N, S_{N} \leq 0\right) & =\mathbb{P}\left(\min _{N} S_{0}+\sum_{n=1}^{N}\left(C-A_{n}\right) \leq 0\right) \\
& =\mathbb{P}\left(\max _{N} \sum_{n=1}^{N}\left(A_{n}-C\right) \geq S_{0}\right)
\end{aligned}
$$

If $\mathbb{E}\left[A_{1}\right] \geq C$, we have $\mathbb{P}\left(\max _{N} \sum_{n=1}^{N}\left(A_{n}-C\right) \geq S_{0}\right)=1$. Thus, the interesting case is $\mathbb{E}\left[A_{1}\right]<C$ (negative drift), and the goal is to determine the starting capital S_{0} such that

$$
\mathbb{P}\left(\max _{N} \sum_{n=1}^{N}\left(A_{n}-C\right) \geq S_{0}\right) \leq \delta
$$

2 Buffer overflow in a queueing system

The following model is a variant of a classical so called GI/GI/1 queueing system. In application to communication systems this queueing system consists of a single server, which processes some $C>0$ number of communication packets per unit of time. Here C is a fixed deterministic constant. Let A_{n} be the random number packets arriving at time n, and Q_{n} be the queue length at time n (asume $Q_{0}=0$). By recursion, we have that

$$
\begin{aligned}
Q_{N} & =\max \left(Q_{N-1}+A_{N}-C, 0\right) \\
& =\max \left(Q_{N-2}+A_{N-1}+A_{N}-2 C, A_{N}-C, 0\right) \\
& =\max _{1 \leq n \leq N-1}\left(\sum_{k=1}^{n}\left(A_{N-k}-C\right), 0\right)
\end{aligned}
$$

Notice, that in distributional sense we have

$$
Q_{N}=\max \left(\max _{1 \leq n \leq N-1}\left(\sum_{k=1}^{n}\left(A_{N-k}-C\right)\right), 0\right)
$$

In steady state, i.e. $N=\infty$, we have

$$
Q_{\infty}=\max \left(\max _{n \geq 1} \sum_{k=1}^{n}\left(A_{k}-C\right), 0\right)
$$

Our goal is to design the size of the queue length storage (buffer) B, so that the likelihood that the number of packets in the queue exceeds B is small. In communication application this is important since every packet not fitting into the buffer is dropped. Thus the goal is to find buffer size $B>0$ such that

$$
\mathbb{P}\left(Q_{\infty} \geq B\right) \leq \delta \Rightarrow \mathbb{P}\left(\max _{n \geq 1} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \leq \delta
$$

If $\mathbb{E}\left[A_{1}\right] \geq C$, we have $\mathbb{P}\left(Q_{\infty} \geq B\right)=1$. So the interesting case is $\mathbb{E}\left[A_{1}\right]<C$ (negative drift).

3 Buffer overflow probability

We see that in both situations we need to estimate

$$
\mathbb{P}\left(\max _{n \geq 1} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right)
$$

We will do this asymptoticlly as $B \rightarrow \infty$.

Theorem 1. Given an i.i.d. sequence $A_{n} \geq 0$ for $n \geq 1$ and $C>\mathbb{E}\left[A_{1}\right]$. Suppose

$$
M(\theta)=\mathbb{E}[\exp (\theta A)]<\infty, \text { for some } \theta \in\left[0, \theta_{0}\right) .
$$

Then
$\lim _{B \rightarrow \infty} \frac{1}{B} \log \mathbb{P}\left(\max _{n \geq 1} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right)=-\sup \{\theta>0: M(\theta)<\exp (\theta C)\}$
Observe that since A_{n} is non-negative, the MGF $\mathbb{E}\left[\exp \left(\theta A_{n}\right)\right]$ is finite for $\theta<0$. Thus it is finite in an interval containing $\theta=0$, and applying the result of Lecture 2 we can take the derivative of MGF. Then

$$
\left.\frac{d}{d \theta} M(\theta)\right|_{\theta=0}=\mathbb{E}[A],\left.\quad \frac{d}{d \theta} \exp (\theta C)\right|_{\theta=0}=C
$$

Since $\mathbb{E}\left[A_{n}\right]<C$, then there exists small enough θ so that $M(\theta)<\exp (\theta C)$,

Figure 1: Illustration for the existance of θ such that $M(\theta)<\exp (\theta C)$
and thus the set of $\theta>0$ for which this is the case is non-empty. (see Figure 1). The theorem says that roughly speaking

$$
\mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \sim \exp \left(-\theta^{*} B\right)
$$

when B is large. Thus given δ select B such that $\exp \left(-\theta^{*} B\right) \leq \delta$, and we can set $B=\frac{1}{\theta^{*}} \log \frac{1}{\delta}$.

Example. Let A be a random variable uniformly distributed in $[0, a]$ and $C=2$. Then, the moment generating function of A is

$$
M(\theta)=\int_{0}^{a} \exp (\theta t) a^{-1} \mathrm{~d} t=\frac{\exp (\theta a)-1}{\theta a}
$$

Then

$$
\sup \{\theta>0: M(\theta) \leq \exp (\theta C)\}=\sup \left\{\theta>0: \frac{\exp (\theta a)-1}{\theta a} \leq \exp (2 \theta)\right\}
$$

Case 1: $a=3$, we have $\theta^{*}=\sup \{\theta>0: \exp (3 \theta)-1 \leq 3 \theta \exp (2 \theta)\}$, i.e. $\theta^{*}=1.54078$.
Case 2: $a=4$, we have that $\{\theta>0: \exp (3 \theta)-1 \leq 3 \theta \exp (2 \theta)\}=\emptyset$ since $\mathbb{E}[A]=2=C$.
Case 3: $a=2$, we have that $\{\theta>0: \exp (3 \theta)-1 \leq 3 \theta \exp (2 \theta)\}=\mathbb{R}_{+}$ and thus $\theta^{*}=\infty$, which implies that $\mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right)=0$ by theorem 1.

Proof of Theorem 1. We will first prove an upper bound and then a lower bound. Combining them yields the result. For the upper bound, we have that

$$
\begin{aligned}
\mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) & \leq \sum_{n=1}^{\infty} \mathbb{P}\left(\sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \\
& =\sum_{n=1}^{\infty} \mathbb{P}\left(\frac{1}{n} \sum_{k=1}^{n} A_{k} \geq C+\frac{B}{n}\right) \\
& \leq \sum_{n=1}^{\infty} \exp \left(-n\left(\theta\left(C+\frac{B}{n}\right)-\log M(\theta)\right)\right)(\theta>0) \\
& =\exp (-\theta B) \sum_{n \geq 1} \exp (-n(\theta C-\log M(\theta)))
\end{aligned}
$$

Fix any θ such that $\theta C \geq \log M(\theta)$, the inequality above gives

$$
\begin{aligned}
& \leq \exp (-\theta B) \sum_{n \geq 0} \exp (-n(\theta C-\log M(\theta))) \\
& =\exp (-\theta B)[1-\exp (-(\theta C-\log M(\theta)))]^{-1}
\end{aligned}
$$

Simplification of the inequality above gives

$$
\begin{aligned}
& \frac{1}{B} \log \mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \leq-\theta+\frac{1}{B} \log \left([1-\exp (-(\theta C-\log M(\theta)))]^{-1}\right) \\
& \Rightarrow \limsup _{B \rightarrow \infty} \frac{1}{B} \log \mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \leq-\theta \text { for } \forall \theta: M(\theta)<\exp (\theta C)
\end{aligned}
$$

Next, we will derive the lower bound.

$$
\mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \geq \mathbb{P}\left(\sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right), \forall n
$$

Fix a $t>0$, then

$$
\begin{aligned}
\mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) & \geq \mathbb{P}\left(\sum_{k=1}^{\lceil B t\rceil}\left(A_{k}-C\right) \geq B\right) \\
& \geq \mathbb{P}\left(\sum_{k=1}^{\lceil B t\rceil}\left(A_{k}-C\right) \geq \frac{\lceil B t\rceil}{t}\right)
\end{aligned}
$$

Then, we have

$$
\begin{align*}
& \liminf _{B} \frac{1}{B} \log \mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \\
& \geq \liminf _{B} \frac{1}{B} \log \mathbb{P}\left(\sum_{k=1}^{\lceil B t\rceil}\left(A_{k}-C\right) \geq \frac{\lceil B t\rceil}{t}\right) \\
& =\liminf _{B} \frac{t}{\lceil B t\rceil} \log \mathbb{P}\left(\sum_{k=1}^{\lceil B t\rceil}\left(A_{k}-C\right) \geq \frac{\lceil B t\rceil}{t}\right) \\
& =t \liminf _{n} \frac{1}{n} \log \mathbb{P}\left(\sum_{k=1}^{n}\left(A_{k}-C\right) \geq \frac{n}{t}\right) \\
& =t \liminf _{n} \frac{1}{n} \log \mathbb{P}\left(\frac{1}{n} \sum_{k=1}^{n} A_{k} \geq C+\frac{1}{t}\right) \\
& \geq-t \inf _{x>C+\frac{1}{t}} I(x) \quad(\text { by Cramer's theorem.) } \\
& \left.\geq-\inf _{t>0} t \inf _{x>C+\frac{1}{t}} I(x) \quad \text { (since we can choose an arbitrary positive } t .\right) \tag{1}
\end{align*}
$$

We claim that

$$
-\inf _{t>0} t \inf _{x>C+\frac{1}{t}} I(x)=-\inf _{t>0} t I\left(C+\frac{1}{t}\right)
$$

Indeed, let $x^{*}=\inf x: I(x)=\infty\left(\right.$ possibly $\left.x^{*}=\infty\right)$. If $x^{*} \leq C$, then $I(C+$ $\left.\frac{1}{t}\right)=\infty$. Suppose $C<x^{*}$. If t is such that $C+\frac{1}{t} \geq x^{*}$, then $\inf _{x>C+\frac{1}{t}} I(x)=$ ∞. Therefore it does not make sense to consider such t. Now for $c+\frac{1}{t}<x^{*}$,
we have I is convex non-decreasing and finite on $\left[E\left[A_{1}\right], x^{*}\right)$. Therefore it is continuous on $\left[E\left[A_{1}\right], x^{*}\right)$, which gives that

$$
\inf _{x>C+\frac{1}{t}} I(x)=I\left(C+\frac{1}{t}\right)
$$

and the claim follows. Thus, we obtain

$$
\liminf _{B \rightarrow \infty} \frac{1}{B} \log \mathbb{P}\left(\max _{n} \sum_{k=1}^{n}\left(A_{k}-C\right) \geq B\right) \geq-\inf _{t>0} t I\left(C+\frac{1}{t}\right)
$$

Exercise in HW 2 shows that $\sup \{\theta>0: M(\theta)<\exp (C \theta)\}=\inf _{t>0} t I(C+$ $\frac{1}{t}$).

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

