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2. Gärtner-Ellis Theorem 

3. Large Deviations for Markov chains 

Large Deviations in Rd 

Most of the developments in this lecture follows Dembo and Zeitouni book [1]. p 
Let Xn ∈ Rd be i.i.d. random variables and A ⊂ Rd . Let Sn = Xn1≤i≤n 
The large deviations question is now regarding the existence of the limit 

1 Sn
lim log P( ∈ A). 
n→∞ n n 

Given θ ∈ Rd, define M(θ) = E[exp((θ, X1))] where (·, ·) represents the inner p 
product of two vectors: (a, b) = i aibi. Define I(x) = supθ∈Rd ((θ, x) − 
log M(θ)), where again I(x) = ∞ is a possibility. 

Theorem 1 (Cram´ Suppose M(θ) < ∞er’s theorem in multiple dimensions). 
for all θ ∈ Rd. Then 

(a) for all closed set F ⊂ Rd ,
 

1 Sn

lim sup log P( ∈ F ) ≤ − inf I(x) 
n→∞ n n x∈F 

(b) for all open set U ⊂ Rd
 

1 Sn

lim inf log P( ∈ U) ≥ − inf I(x) 
n→∞ n n x∈U 
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Unfortunately, the theorem does not hold in full generality, and the addi
tional condition such as M(θ) < ∞ for all θ is needed. Known counterex
amples are somewhat involved and can be found in a paper by Dinwoodie [2] 
which builds on an earlier work of Slaby [5]. The difficulty arises that there is 
no longer the notion of monotonicity of I(x) as a function of the vector x. This 
is not the tightest condition and more general conditions are possible, see [1]. 
The proof of the theorem is skipped and can be found in [1]. 

dLet us consider an example of application of Theorem 2. Let Xn = N(0, Σ) 
where d = 2 and 

11 2Σ = , F = {(x1, x2) : 2x1 + x2 ≥ 5}.1 12 

1Goal: prove that the limit limn log P(Sn ∈ F ) exists, and compute it. n n 
By the upper bound part, 

1 Sn
lim sup log P( ∈ F ) ≤ − inf I(x) 

n n n x∈F 

We have 
M(θ) = E[exp((θ, X))] 

Letting = 
d denote equality in distribution, we have 

d(θ, X) = N(0, θT Σθ) 

= N(0, θ1
2 + θ1θ2 + θ2

2), 

where θ = (θ1, θ2). Thus 

M(θ) = exp( 
1
(θ1

2 + θ1θ2 + θ2
2))

2

I(x) = sup(θ1x1 + θ2x2 − 
1
(θ1

2 + θ1θ2 + θ2
2))

2θ1,θ2 

Let 

g(θ1, θ2) = θ1x1 + θ2x2 − 
1
(θ1

2 + θ1θ2 + θ2
2). 

2

dFrom g(θ1, θ2) = 0, we have that dθj 

1 1 
x1 − θ1 − θ2 = 0, x2 − θ2 − θ1 = 0,

2 2 
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from which we have
 
4 2 4 2 

θ1 = x1 − x2, θ2 = x2 − x1
3 3 3 3 

Then 
2 2 2I(x1, x2) = (x1 + x2 − x1x2). 
3

So we need to find 

2inf 
2
(x1 + x 2 − x1x2) 

x1,x2 3

s.t. 2x1 + x2 ≥ 5 (x ∈ F ) 

This becomes a non-linear optimization problem. Applying the Karush-Kuhn-
Tucker condition, we obtain 

min f s.t. g ≤ 0 

v f + µ v g = 0, (1) 

µg = 0 

µ < 0. (2) 

which gives 

4 2 4 2 
( x1 − x2, x2 − x1) + µ(2, 1) = 0, µ(2x1 + x2 − 5) = 0. 
3 3 3 3 

If 2x1 + x2 − 5  0, then µ 0 and further x1 x2 0. But this violates = = = = 
2x1 + x2 ≥ 5. So we have 2x1 + x2 − 5 = 0 which implies x2 = 5 − 2x1. 
Thus, we have a one dimensional unconstrained minimization problem: 

2min 
2 
x1 + 

2
(5 − 2x1)

2 − x1(5 − 2x1)
3 3

10 35which gives x1 = , x2 = and I(x1, x2) = 5.37. Thus 11 11 

1 Sn
lim sup log P( ∈ F ) ≤ −5.37 

n nn 

Applying the lower bound part of the Cramér’s Theorem we obtain 

1 Sn
lim inf log P( ∈ F ) (3) 

n n n
 
1 Sn
≥ lim inf log P( ∈ F o) (4) 

n n n 
=≥ − inf I(x1, x2)

2x1+x2>5 

= − 5.37 (by continuity of I). 
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Combining, we obtain 

1 Sn 1 Sn
lim log P( ∈ F ) = lim inf log P( ∈ F ) 
n n n n n n 

1 Sn
= lim sup log P( ∈ F ) 

n n 

= −5.37. 
n 

2 Gärtner-Ellis Theorem 

The Gärtner-Ellis Theorem deals with large deviations event when the sequence 
Xn is not necessarily independent. One immediate application of this theorem 
is large deviations for Markov chains, which we will discuss in the following 
section. 

Let Xn be a sequence of not necessarily independent random variables in 
Rd . Then in general for Sn = 

p
Xk the identity E[exp((θ, Sn))] = 1≤k≤n 

(E[exp((θ, X1))])n does not hold. Nevertheless there exists a broad set of con
ditions under which the large deviations bounds hold. Thus consider a general 
sequence of random variable Yn ∈ Rd which stands for (1/n)Sn in the i.i.d. 
case. Let φn(θ) = 1 log E[exp(n(θ, Yn))]. Note that for the i.i.d. case n 

1 
φn(θ) = log E[exp(n(θ, n−1Sn))] 

n 
1 

= log Mn(θ) 
n 

= log M(θ) 

= log E[exp((θ, X1))]. 

Loosely speaking Gärtner-Ellis Theorem says that when convergence 

φn(θ) → φ(θ) (5) 

takes place for some limiting function φ, then under certain additional technical 
assumptions, the large deviations principle holds for rate function 

I(x) £ sup((θ, x) − φ(x)). (6) 
θ∈R 

Formally, 

Theorem 2. Given a sequence of random variables Yn, suppose the limit φ(θ) 
(5) exists for all θ ∈ Rd. Furthermore, suppose φ(θ) is finite and differentiable 
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everywhere on Rd. Then the following large deviations bounds hold for I defined 
by (6) 

lim sup 
1 
log P(Yn ∈ F ) ≤ − inf I(x), for any closed set F ⊂ Rd . 

n n x∈F 

lim inf 
1 
log P(Yn ∈ U) ≥ − inf I(x), for any open set U ⊂ Rd . 

n n x∈U 

As for Theorem 1, this is not the most general version of the theorem. The 
version above is established as exercise 2.3.20 in [1]. More general versions can 
be found there as well. 

Can we use Chernoff type argument to get an upper bound? For θ > 0, we 
have 

1
P( Yn ≥ a) = P(exp(θYn) ≥ exp(θna)) 

n 
≤ exp(−n(θa − φn(θ))) 

So we can get an upper bound 

sup(θa − φn(a)) 
θ≥0 

In the i.i.d. case we used the fact that supθ≥0(θa − M(θ)) = supθ(θa − M(θ)) 
when a > µ = E[X]. But now we are dealing with the multidimensional case 
where such an identity does not make sense. 

Large Deviations for finite state Markov chains 

Let Xn be a finite state Markov chain with states Σ = {1, 2, . . . , N}. The 
transition matrix of this Markov chain is P = (Pi,j , 1 ≤ i, j ≤ N). We assume 

(m)that the chain is irreducible. Namely there exists m > 0 such that Pi,j > 0 for 
all pairs of states i, j, where P (m) denotes the m-the power of P representing the 
transition probabilities after m steps. Our goal is to derive the large deviations 
bounds for the empirical means of the Markov chain. Namely, let f : Σ → Rd 

be any function and let Yn = f(Xn). Our goal is to derive the large deviations p
bound for n−1Sn where Sn = Yk. For this purpose we need to recall 1≤i≤n 
the Perron-Frobenious Theorem. 

Theorem 3. Let B = (Bi,j , 1 ≤ i, j ≤ N) denote a non-negative irreducible 
matrix. Namely, Bi,j ≥ 0 for all i, j and there exists m such that all the elements 
of Bm are strictly positive. Then B possesses an eigenvalue ρ called Perron-
Frobenious eigenvalue, which satisfies the following properties. 
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1. ρ > 0 is real. 

2. For every e-value λ of B, |λ| ≤ ρ, where |λ| is the norm of (possibly 
complex) λ. 

3. The left and right e-vectors of B denoted by µ and ν corresponding to 
ρ, are unique up to a constant multiple and have strictly positive compo
nents. 

This theorem can be found in many books on linear algebra, for example [4]. 
The following corollary for the Perron-Frobenious Theorem shows that the 

essentially the rate of growth of the sequence of matrices Bn is ρn. Specifically, 

Corollary 1. For every vector φ = (φj , 1 ≤ j ≤ N) with strictly positive 
elements, the following holds ⎡ ⎤ ⎡ ⎤   1 1⎣ Bn ⎣ Bnlim log i,j φj ⎦ = lim log j,iφj ⎦ = log ρ. 

n n n n 
1≤j≤N 1≤j≤N 

Proof. Let α = maxj νj , β = minj νj , γ = maxj φj , δ = minj φj . We have 

γ δ 
Bn Bn 

β i,j νj ≥ Bn 

α i,j νj .i,j φj ≥ 

Therefore, ⎡ ⎤ ⎡ ⎤   1 1⎣ Bn ⎣ Bn ⎦lim log i,j φj ⎦ = lim log i,j νjn n n n 
1≤j≤N 1≤j≤N 

1 
= lim log(ρnνi) 

n n 
= log ρ. 

The second identity is established similarly. 

Now, given a Markov chain Xn, a function f : Σ → Rd and vector θ ∈ Rd , 
consider a modified matrix Pθ = (e(θ,f(j))Pi,j , 1 ≤ i, j ≤ N). Then Pθ is an 
irreducible non-negative matrix, since P is such a matrix. Let ρ(Pθ) denote its 
Perron-Frobenious eigenvalue. p1Theorem 4. The sequence 1 Sn = f(Xn) satisfies the large devian n p1≤i≤k 
tions bounds with rate function I(x) = θ∈Rd ((θ, x)− log ρ(Pθ)). Specifically, 
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for every state i0 ∈ Σ, closed set F ⊂ Rd and every open set U ⊂ Rd, the fol
lowing holds: 

1 
lim sup log P(n −1Sn ∈ F |X0 = i0) ≤ − inf I(x), 

n n	 x∈F 

1 
lim inf log P(n −1Sn ∈ U |X0 = i0) ≤ − inf I(x). 

n	 n x∈U 

1 (θ,Sn)]Proof. We will show that the sequence of functions φn(θ) = log E[en 
has a limit φ which is finite and differentiable everywhere. Given the starting 
state i0 we have  

(θ,f(ik))log E[e(θ,Sn)] = log Pi,i1 Pi1,i2 · · · Pin−1,in e

i1,...,in∈Σ 1≤k≤n
 ⎡ ⎤ 

= log ⎣ Pθ
n(i0, j)⎦ , 

1≤j≤N 

where P n(i, j) denotes the i, j-th entry of the matrix Pθ
n . Letting φj = 1 andθ 

applying Corollary 1, we obtain 

lim φn(θ) = log ρ(Pθ). 
n 

Thus the Gärtner-Ellis can be applied provided the differentiability of log ρ(Pθ) 
with respect to θ can be established. The Perron-Frobenious theory in fact can 
be used to show that such a differentiability indeed takes place. Details can be 
found in the book by Lancaster [3], Theorem 7.7.1. 
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