MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.265/15.070J	Fall 2013
Lecture 5	9/16/2013

Extension of LD to \mathbb{R}^d and dependent process. Gärtner-Ellis Theorem

Content.

- 1. Large Deviations in may dimensions
- 2. Gärtner-Ellis Theorem
- 3. Large Deviations for Markov chains

1 Large Deviations in \mathbb{R}^d

Most of the developments in this lecture follows Dembo and Zeitouni book [1]. Let $X_n \in \mathbb{R}^d$ be i.i.d. random variables and $A \subset \mathbb{R}^d$. Let $S_n = \sum_{1 \le i \le n} X_n$ The large deviations question is now regarding the existence of the limit

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in A).$$

Given $\theta \in \mathbb{R}^d$, define $M(\theta) = \mathbb{E}[\exp(\langle \theta, X_1 \rangle)]$ where $\langle \cdot, \cdot \rangle$ represents the inner product of two vectors: $\langle a, b \rangle = \sum_i a_i b_i$. Define $I(x) = \sup_{\theta \in \mathbb{R}^d} (\langle \theta, x \rangle - \log M(\theta))$, where again $I(x) = \infty$ is a possibility.

Theorem 1 (Cramér's theorem in multiple dimensions). Suppose $M(\theta) < \infty$ for all $\theta \in \mathbb{R}^d$. Then

(a) for all closed set $F \subset \mathbb{R}^d$,

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F) \le -\inf_{x \in F} I(x)$$

(b) for all open set $U \subset \mathbb{R}^d$

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in U) \ge -\inf_{x \in U} I(x)$$

Unfortunately, the theorem does not hold in full generality, and the additional condition such as $M(\theta) < \infty$ for all θ is needed. Known counterexamples are somewhat involved and can be found in a paper by Dinwoodie [2] which builds on an earlier work of Slaby [5]. The difficulty arises that there is no longer the notion of monotonicity of I(x) as a function of the vector x. This is not the tightest condition and more general conditions are possible, see [1]. The proof of the theorem is skipped and can be found in [1].

Let us consider an example of application of Theorem 2. Let $X_n \stackrel{d}{=} N(0, \Sigma)$ where d = 2 and

$$\Sigma = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}, \ F = \{(x_1, x_2) : 2x_1 + x_2 \ge 5\}.$$

Goal: prove that the limit $\lim_n \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F)$ exists, and compute it. By the upper bound part,

$$\limsup_{n} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F) \le -\inf_{x \in F} I(x)$$

We have

$$M(\theta) = \mathbb{E}[\exp(\langle \theta, X \rangle)]$$

Letting $\stackrel{d}{=}$ denote equality in distribution, we have

$$\begin{aligned} \langle \theta, X \rangle &\stackrel{d}{=} N(0, \theta^T \Sigma \theta) \\ &= N(0, \theta_1^2 + \theta_1 \theta_2 + \theta_2^2), \end{aligned}$$

where $\theta = (\theta_1, \theta_2)$. Thus

$$M(\theta) = \exp(\frac{1}{2}(\theta_1^2 + \theta_1\theta_2 + \theta_2^2))$$

$$I(x) = \sup_{\theta_1, \theta_2}(\theta_1 x_1 + \theta_2 x_2 - \frac{1}{2}(\theta_1^2 + \theta_1\theta_2 + \theta_2^2))$$

Let

$$g(\theta_1, \theta_2) = \theta_1 x_1 + \theta_2 x_2 - \frac{1}{2}(\theta_1^2 + \theta_1 \theta_2 + \theta_2^2).$$

From $\frac{d}{d\theta_j}g(\theta_1,\theta_2)=0$, we have that

$$x_1 - \theta_1 - \frac{1}{2}\theta_2 = 0, \quad x_2 - \theta_2 - \frac{1}{2}\theta_1 = 0,$$

from which we have

$$\theta_1 = \frac{4}{3}x_1 - \frac{2}{3}x_2, \quad \theta_2 = \frac{4}{3}x_2 - \frac{2}{3}x_1$$

Then

$$I(x_1, x_2) = \frac{2}{3}(x_1^2 + x_2^2 - x_1 x_2).$$

So we need to find

$$\inf_{x_1, x_2} \frac{2}{3} (x_1^2 + x^2 - x_1 x_2)$$
s.t. $2x_1 + x_2 \ge 5 \quad (x \in F)$

This becomes a non-linear optimization problem. Applying the Karush-Kuhn-Tucker condition, we obtain

$$\min f \quad s.t. \quad g \le 0 \bigtriangledown f + \mu \bigtriangledown g = 0,$$
(1)

$$\mu g = 0 \mu < 0.$$
(2)

which gives

$$\left(\frac{4}{3}x_1 - \frac{2}{3}x_2, \frac{4}{3}x_2 - \frac{2}{3}x_1\right) + \mu(2, 1) = 0, \quad \mu(2x_1 + x_2 - 5) = 0.$$

If $2x_1 + x_2 - 5 \neq 0$, then $\mu = 0$ and further $x_1 = x_2 = 0$. But this violates $2x_1 + x_2 \geq 5$. So we have $2x_1 + x_2 - 5 = 0$ which implies $x_2 = 5 - 2x_1$. Thus, we have a one dimensional unconstrained minimization problem:

min
$$\frac{2}{3}x_1^2 + \frac{2}{3}(5-2x_1)^2 - x_1(5-2x_1)$$

which gives $x_1 = \frac{10}{11}$, $x_2 = \frac{35}{11}$ and $I(x_1, x_2) = 5.37$. Thus

$$\limsup_{n} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F) \le -5.37$$

Applying the lower bound part of the Cramér's Theorem we obtain

$$\liminf_{n} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F) \tag{3}$$

$$\geq \liminf_{n} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F^o)$$

$$= \geq - \inf_{2x_1 + x_2 > 5} I(x_1, x_2)$$
(4)

= -5.37 (by continuity of I).

Combining, we obtain

$$\lim_{n} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F) = \liminf_{n} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F)$$
$$= \limsup_{n} \frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \in F)$$
$$= -5.37.$$

2 Gärtner-Ellis Theorem

The Gärtner-Ellis Theorem deals with large deviations event when the sequence X_n is not necessarily independent. One immediate application of this theorem is large deviations for Markov chains, which we will discuss in the following section.

Let X_n be a sequence of not necessarily independent random variables in \mathbb{R}^d . Then in general for $S_n = \sum_{1 \le k \le n} X_k$ the identity $\mathbb{E}[\exp(\langle \theta, S_n \rangle)] = (\mathbb{E}[\exp(\langle \theta, X_1 \rangle)])^n$ does not hold. Nevertheless there exists a broad set of conditions under which the large deviations bounds hold. Thus consider a general sequence of random variable $Y_n \in \mathbb{R}^d$ which stands for $(1/n)S_n$ in the i.i.d. case. Let $\phi_n(\theta) = \frac{1}{n} \log \mathbb{E}[\exp(n\langle \theta, Y_n \rangle)]$. Note that for the i.i.d. case

$$\phi_n(\theta) = \frac{1}{n} \log \mathbb{E}[\exp(n\langle \theta, n^{-1}S_n \rangle)]$$

= $\frac{1}{n} \log M^n(\theta)$
= $\log M(\theta)$
= $\log \mathbb{E}[\exp(\langle \theta, X_1 \rangle)].$

Loosely speaking Gärtner-Ellis Theorem says that when convergence

$$\phi_n(\theta) \to \phi(\theta) \tag{5}$$

takes place for some limiting function ϕ , then under certain additional technical assumptions, the large deviations principle holds for rate function

$$I(x) \triangleq \sup_{\theta \in \mathbb{R}} (\langle \theta, x \rangle - \phi(x)).$$
(6)

Formally,

Theorem 2. Given a sequence of random variables Y_n , suppose the limit $\phi(\theta)$ (5) exists for all $\theta \in \mathbb{R}^d$. Furthermore, suppose $\phi(\theta)$ is finite and differentiable everywhere on \mathbb{R}^d . Then the following large deviations bounds hold for I defined by (6)

$$\limsup_{n} \frac{1}{n} \log \mathbb{P}(Y_n \in F) \leq -\inf_{x \in F} I(x), \quad \text{for any closed set } F \subset \mathbb{R}^d.$$
$$\liminf_{n} \frac{1}{n} \log \mathbb{P}(Y_n \in U) \geq -\inf_{x \in U} I(x), \quad \text{for any open set } U \subset \mathbb{R}^d.$$

As for Theorem 1, this is not the most general version of the theorem. The version above is established as exercise 2.3.20 in [1]. More general versions can be found there as well.

Can we use Chernoff type argument to get an upper bound? For $\theta > 0$, we have

$$\mathbb{P}(\frac{1}{n}Y_n \ge a) = \mathbb{P}(\exp(\theta Y_n) \ge \exp(\theta na))$$
$$\le \exp(-n(\theta a - \phi_n(\theta)))$$

So we can get an upper bound

$$\sup_{\theta \ge 0} (\theta a - \phi_n(a))$$

In the i.i.d. case we used the fact that $\sup_{\theta \ge 0}(\theta a - M(\theta)) = \sup_{\theta}(\theta a - M(\theta))$ when $a > \mu = \mathbb{E}[X]$. But now we are dealing with the multidimensional case where such an identity does not make sense.

3 Large Deviations for finite state Markov chains

Let X_n be a finite state Markov chain with states $\Sigma = \{1, 2, ..., N\}$. The transition matrix of this Markov chain is $P = (P_{i,j}, 1 \le i, j \le N)$. We assume that the chain is irreducible. Namely there exists m > 0 such that $P_{i,j}^{(m)} > 0$ for all pairs of states i, j, where $P^{(m)}$ denotes the *m*-the power of *P* representing the transition probabilities after *m* steps. Our goal is to derive the large deviations bounds for the empirical means of the Markov chain. Namely, let $f : \Sigma \to \mathbb{R}^d$ be any function and let $Y_n = f(X_n)$. Our goal is to derive the large deviations bound for $n^{-1}S_n$ where $S_n = \sum_{1 \le i \le n} Y_k$. For this purpose we need to recall the Perron-Frobenious Theorem.

Theorem 3. Let $B = (B_{i,j}, 1 \le i, j \le N)$ denote a non-negative irreducible matrix. Namely, $B_{i,j} \ge 0$ for all i, j and there exists m such that all the elements of B^m are strictly positive. Then B possesses an eigenvalue ρ called Perron-Frobenious eigenvalue, which satisfies the following properties.

- 1. $\rho > 0$ is real.
- 2. For every e-value λ of B, $|\lambda| \leq \rho$, where $|\lambda|$ is the norm of (possibly complex) λ .
- 3. The left and right e-vectors of B denoted by μ and ν corresponding to ρ , are unique up to a constant multiple and have strictly positive components.

This theorem can be found in many books on linear algebra, for example [4]. The following corollary for the Perron-Frobenious Theorem shows that the essentially the rate of growth of the sequence of matrices B^n is ρ^n . Specifically,

Corollary 1. For every vector $\phi = (\phi_j, 1 \leq j \leq N)$ with strictly positive elements, the following holds

$$\lim_{n} \frac{1}{n} \log \left[\sum_{1 \le j \le N} B_{i,j}^{n} \phi_j \right] = \lim_{n} \frac{1}{n} \log \left[\sum_{1 \le j \le N} B_{j,i}^{n} \phi_j \right] = \log \rho.$$

Proof. Let $\alpha = \max_j \nu_j, \beta = \min_j \nu_j, \gamma = \max_j \phi_j, \delta = \min_j \phi_j$. We have

$$\frac{\gamma}{\beta}B_{i,j}^n\nu_j \ge B_{i,j}^n\phi_j \ge \frac{\delta}{\alpha}B_{i,j}^n\nu_j.$$

Therefore,

$$\lim_{n} \frac{1}{n} \log \left[\sum_{1 \le j \le N} B_{i,j}^{n} \phi_{j} \right] = \lim_{n} \frac{1}{n} \log \left[\sum_{1 \le j \le N} B_{i,j}^{n} \nu_{j} \right]$$
$$= \lim_{n} \frac{1}{n} \log(\rho^{n} \nu_{i})$$
$$= \log \rho.$$

The second identity is established similarly.

Now, given a Markov chain X_n , a function $f : \Sigma \to \mathbb{R}^d$ and vector $\theta \in \mathbb{R}^d$, consider a modified matrix $P_{\theta} = (e^{\langle \theta, f(j) \rangle} P_{i,j}, 1 \leq i, j \leq N)$. Then P_{θ} is an irreducible non-negative matrix, since P is such a matrix. Let $\rho(P_{\theta})$ denote its Perron-Frobenious eigenvalue.

Theorem 4. The sequence $\frac{1}{n}S_n = \frac{1}{n}\sum_{1 \le i \le k} f(X_n)$ satisfies the large deviations bounds with rate function $I(x) = \sum_{\theta \in \mathbb{R}^d} (\langle \theta, x \rangle - \log \rho(P_\theta))$. Specifically,

for every state $i_0 \in \Sigma$, closed set $F \subset \mathbb{R}^d$ and every open set $U \subset \mathbb{R}^d$, the following holds:

$$\limsup_{n} \frac{1}{n} \log \mathbb{P}(n^{-1}S_n \in F | X_0 = i_0) \leq -\inf_{x \in F} I(x),$$
$$\liminf_{n} \frac{1}{n} \log \mathbb{P}(n^{-1}S_n \in U | X_0 = i_0) \leq -\inf_{x \in U} I(x).$$

Proof. We will show that the sequence of functions $\phi_n(\theta) = \frac{1}{n} \log \mathbb{E}[e^{\langle \theta, S_n \rangle}]$ has a limit ϕ which is finite and differentiable everywhere. Given the starting state i_0 we have

$$\log \mathbb{E}[e^{\langle \theta, S_n \rangle}] = \log \sum_{i_1, \dots, i_n \in \Sigma} P_{i, i_1} P_{i_1, i_2} \cdots P_{i_{n-1}, i_n} \prod_{1 \le k \le n} e^{\langle \theta, f(i_k) \rangle}$$
$$= \log \left[\sum_{1 \le j \le N} P_{\theta}^n(i_0, j) \right],$$

where $P_{\theta}^{n}(i, j)$ denotes the *i*, *j*-th entry of the matrix P_{θ}^{n} . Letting $\phi_{j} = 1$ and applying Corollary 1, we obtain

$$\lim_{n} \phi_n(\theta) = \log \rho(P_\theta).$$

Thus the Gärtner-Ellis can be applied provided the differentiability of $\log \rho(P_{\theta})$ with respect to θ can be established. The Perron-Frobenious theory in fact can be used to show that such a differentiability indeed takes place. Details can be found in the book by Lancaster [3], Theorem 7.7.1.

References

- [1] A. Dembo and O. Zeitouni, *Large deviations techniques and applications*, Springer, 1998.
- [2] IH Dinwoodie, A note on the upper bound for iid large deviations, The Annals of Probability **19** (1991), no. 4, 1732–1736.
- [3] Peter Lancaster and Miron Tismenetsky, *Theory of matrices*, vol. 2, Academic press New York, 1969.
- [4] E Seneta, *Non-negative matrices andmarkov chains*, Springer2Verlag, New York (1981).
- [5] M Slaby, On the upper bound for large deviations of sums of iid random vectors, The Annals of Probability (1988), 978–990.

15.070J / 6.265J Advanced Stochastic Processes Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.