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Quadratic variation property of Brownian motion  

Content. 

1. Unbounded variation of a Brownian motion. 

2. Bounded quadratic variation of a Brownian motion. 

Unbounded variation of a Brownian motion 

Any sequence of values 0 < t0 < t1 < · · · < tn < T is called a partition Π = 
Π(t0, . . . , tn) of an interval [0, T ]. Given a continuous function f : [0, T ] → R 
its total variation is defined to be  

LV (f) £ sup |f(tk) − f(tk−1)|, 
Π 1≤k≤n 

where the supremum is taken over all possible partitions Π of the interval [0, T ] 
for all n. A function f is defined to have bounded variation if its total variation 
is finite. 

Theorem 1. Almost surely no path of a Brownian motion has bounded variation 
for every T ≥ 0. Namely, for every T 

P(ω : LV (B(ω)) < ∞) = 0. 

The main tool is to use the following result from real analysis, which we do 
not prove: if a function f has bounded variation on [0, T ] then it is differentiable 
almost everywhere on [0, T ]. We will now show that quite the opposite is true. 

Proposition 1. Brownian motion is almost surely nowhere differentiable. Specif
ically, 

B(t + h) − B(t)
P(∀ t ≥ 0 : lim sup | | = ∞) = 1. 

hh→0 
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Proof. Fix T > 0,M > 0 and consider A(M, T ) ⊂ C[0, ∞) – the set of all 
paths ω ∈ C[0, ∞) such that there exists at least one point t ∈ [0, T ] such that 

B(t + h) − B(t)
lim sup | | ≤ M. 

hh→0 

We claim that P(A(M, T )) = 0. This implies P(∪M≥1A(M, T )) = 0 which 
is what we need. Then we take a union of the sets A(M, T ) with increasing T 
and conclude that B is almost surely nowhere differentiable on [0, ∞). If ω ∈ 
A(M, T ), then there exists t ∈ [0, T ] and n such that |B(s)−B(t)| ≤ 2M |s−t|

2for all s ∈ (t − 2 , t + ). Now define An ⊂ C[0, ∞) to be the set of all paths n n 
ω such that for some t ∈ [0, T ] 

|B(s) − B(t)| ≤ 2M |s − t| 

2for all s ∈ (t − 2 , t + ). Then n n 

An ⊂ An+1 (1) 

and 

A(M, T ) ⊂ ∪nAn. (2) 

jFind k = max{j : ≤ t}. Define n 

k + 2 k + 1 k + 1 k k k − 1 
Yk = max{|B( ) − B( )|, |B( ) − B( )|, |B( ) − B( )|}. 

n n n n n n 

In other words, consider the maximum increment of the Brownian motion over 
these three short intervals. We claim that Yk ≤ 6M/n for every path ω ∈ An. 

To prove the bound required bound on Yk we first consider 

k + 2 k + 1 k + 2 k + 1 |B( ) − B( )| ≤ |B( ) − B(t)| + |B(t) − B( )|
n n n n 

2 1 ≤ 2M + 2M 
n n 

6M ≤ . 
n 

The other two differences are analyzed similarly. 

Now consider event Bn which is the set of all paths ω such that Yk(ω) ≤ 6M/n 
for some 0 ≤ k ≤ Tn. We showed that An ⊂ Bn. We claim that limn P(Bn) = 
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0. Combining this with (1), we conclude P(An) = 0. Combining with (2), this 
will imply that P(A(M, T )) = 0 and we will be done. 

Now to obtain the required bound on P(Bn) we note that, since the incre
ments of a Brownian motion are independent and identically distributed, then 

P(Bn) ≤ P(Yk ≤ 6M/n) 
0≤k≤Tn 

3 2 2 1 1 ≤ TnP(max{|B( ) − B( )|, |B( ) − B( )|, |B( ) − B(0)|} ≤ 6M/n) 
n n n n n 

1 
= Tn[P(|B( )| ≤ 6M/n)]3 . (3) 

n 
Finally, we just analyze this probability. We have 

1 √ 
P(|B( )| ≤ 6M/n) = P(|B(1)| ≤ 6M/ n). 

n 

Since B(1) which has the standard normal distribution, its density at any point is√ √ 
at most 1/ 2π, then we have that this probability is at a most (2(6M)/ 2πn). 
We conclude that the expression in (3) is, ignoring constants, O(n(1/ 

√ 
n)3) = √ 

O(1/ n) and thus converges to zero as n → ∞. We proved limn P(Bn) = 
0. 

Bounded quadratic variation of a Brownian motion 

Even though Brownian motion is nowhere differentiable and has unbounded 
total variation, it turns out that it has bounded quadratic variation. This observa
tion is the cornerstone of Ito calculus, which we will study later in this course. 

We again start with partitions Π = Π(t0, . . . , tn) of a fixed interval [0, T ], 
but now consider instead 

Q(Π, B) £ (B(tk) − B(tk−1))
2 . 

1≤k≤n 

where, we make (without loss of generality) t0 = 0 and tn = T . For every 
partition Π define 

Δ(Π) = max |tk − tk−1|. 
1≤k≤n 

Theorem 2. Consider an arbitrary sequence of partitions Πi, i = 1, 2, . . .. Sup
pose limi→∞ Δ(Πi) = 0. Then 

lim E[(Q(Πi, B) − T )2] = 0. (4)
i→∞ 
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Suppose in addition limi→∞ i
2Δ(Πi) = 0 (that is the resolution Δ(Πi) con

verges to zero faster than 1/i2). Then almost surely 

Q(Πi, B) → T. (5) 

In words, the standard Brownian motion has almost surely finite quadratic vari
ation which is equal to T . 

Proof. We will use the following fact. Let Z be a standard Normal random 
variable. Then E[Z4] = 3 (cute, isn’t it?). The proof can be obtained using 
Laplace transforms of Normal random variables or integration by parts, and we 
skip the details. 

Let θi = (B(ti)−B(ti−1))
2 −(ti −ti−1). Then, using the independent Gaussian 

increments property of Brownian motion, θi is a sequence of independent zero 
mean random variables. We have 

Q(Πi) − T = θi. 
1≤i≤n 

Now consider the second moment of this difference 

E(Q(Πi) − T )2 = E(B(ti) − B(ti−1))
4 

1≤i≤n 

− 2 E(B(ti) − B(ti−1))
2(ti − ti−1) + (ti − ti−1)

2 . 
1≤i≤n 1≤i≤n 

Using the E[Z4] = 3 property, this expression becomes 

3(ti − ti−1)
2 − 2 (ti − ti−1)

2 + (ti − ti−1)
2 

1≤i≤n 1≤i≤n 1≤i≤n 

= 2 (ti − ti−1)
2  

1≤i≤n  

≤ 2Δ(Πi) (ti − ti−1)  
1≤i≤n  

= 2Δ(Πi)T.  

Now if limi Δ(Πi) = 0, then the bound converges to zero as well. This estab
lishes the first part of the theorem. 

To prove the second part identify a sequence Ei → 0 such that Δ(Πi) = 
Ei/i

2 . By assumption, such a sequence exists. By Markov’s inequality, this is 
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bounded by 

P((Q(Πi) − T )2 > 2Ei) ≤ 
E(Q(Πi) − T )2 

2Ei 
≤ 

2Δ(Πi)T 
2Ei 

= 
T 
i2 (6) 

 TSince i i2 < ∞, then the sum of probabilities in (6) is finite. Then apply
ing the Borel-Cantelli Lemma, the probability that (Q(Πi) − T )2 > 2Ei for 
infinitely many i is zero. Since Ei → 0, this exactly means that almost surely, 
limi Q(Πi) = T . 

Additional reading materials 

• Sections 6.11 and 6.12 of Resnick’s [1] chapter 6 in the book. 
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