MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Quadratic variation property of Brownian motion

Content.

1. Unbounded variation of a Brownian motion.
2. Bounded quadratic variation of a Brownian motion.

1 Unbounded variation of a Brownian motion

Any sequence of values $0<t_{0}<t_{1}<\cdots<t_{n}<T$ is called a partition $\Pi=$ $\Pi\left(t_{0}, \ldots, t_{n}\right)$ of an interval $[0, T]$. Given a continuous function $f:[0, T] \rightarrow \mathbb{R}$ its total variation is defined to be

$$
L V(f) \triangleq \sup _{\Pi} \sum_{1 \leq k \leq n}\left|f\left(t_{k}\right)-f\left(t_{k-1}\right)\right|,
$$

where the supremum is taken over all possible partitions Π of the interval $[0, T]$ for all n. A function f is defined to have bounded variation if its total variation is finite.

Theorem 1. Almost surely no path of a Brownian motion has bounded variation for every $T \geq 0$. Namely, for every T

$$
\mathbb{P}(\omega: L V(B(\omega))<\infty)=0 .
$$

The main tool is to use the following result from real analysis, which we do not prove: if a function f has bounded variation on $[0, T]$ then it is differentiable almost everywhere on $[0, T]$. We will now show that quite the opposite is true.

Proposition 1. Brownian motion is almost surely nowhere differentiable. Specifically,

$$
\mathbb{P}\left(\forall t \geq 0: \limsup _{h \rightarrow 0}\left|\frac{B(t+h)-B(t)}{h}\right|=\infty\right)=1
$$

Proof. Fix $T>0, M>0$ and consider $A(M, T) \subset C[0, \infty)-$ the set of all paths $\omega \in C[0, \infty)$ such that there exists at least one point $t \in[0, T]$ such that

$$
\limsup _{h \rightarrow 0}\left|\frac{B(t+h)-B(t)}{h}\right| \leq M
$$

We claim that $\mathbb{P}(A(M, T))=0$. This implies $\mathbb{P}\left(\cup_{M \geq 1} A(M, T)\right)=0$ which is what we need. Then we take a union of the sets $A(M, T)$ with increasing T and conclude that B is almost surely nowhere differentiable on $[0, \infty)$. If $\omega \in$ $A(M, T)$, then there exists $t \in[0, T]$ and n such that $|B(s)-B(t)| \leq 2 M|s-t|$ for all $s \in\left(t-\frac{2}{n}, t+\frac{2}{n}\right)$. Now define $A_{n} \subset C[0, \infty)$ to be the set of all paths ω such that for some $t \in[0, T]$

$$
|B(s)-B(t)| \leq 2 M|s-t|
$$

for all $s \in\left(t-\frac{2}{n}, t+\frac{2}{n}\right)$. Then

$$
\begin{equation*}
A_{n} \subset A_{n+1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A(M, T) \subset \cup_{n} A_{n} . \tag{2}
\end{equation*}
$$

Find $k=\max \left\{j: \frac{j}{n} \leq t\right\}$. Define
$Y_{k}=\max \left\{\left|B\left(\frac{k+2}{n}\right)-B\left(\frac{k+1}{n}\right)\right|,\left|B\left(\frac{k+1}{n}\right)-B\left(\frac{k}{n}\right)\right|,\left|B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right|\right\}$.
In other words, consider the maximum increment of the Brownian motion over these three short intervals. We claim that $Y_{k} \leq 6 M / n$ for every path $\omega \in A_{n}$.

To prove the bound required bound on Y_{k} we first consider

$$
\begin{aligned}
\left|B\left(\frac{k+2}{n}\right)-B\left(\frac{k+1}{n}\right)\right| & \leq\left|B\left(\frac{k+2}{n}\right)-B(t)\right|+\left|B(t)-B\left(\frac{k+1}{n}\right)\right| \\
& \leq 2 M \frac{2}{n}+2 M \frac{1}{n} \\
& \leq \frac{6 M}{n} .
\end{aligned}
$$

The other two differences are analyzed similarly.
Now consider event B_{n} which is the set of all paths ω such that $Y_{k}(\omega) \leq 6 M / n$ for some $0 \leq k \leq T n$. We showed that $A_{n} \subset B_{n}$. We claim that $\lim _{n} \mathbb{P}\left(B_{n}\right)=$

0 . Combining this with (1), we conclude $\mathbb{P}\left(A_{n}\right)=0$. Combining with (2), this will imply that $\mathbb{P}(A(M, T))=0$ and we will be done.

Now to obtain the required bound on $\mathbb{P}\left(B_{n}\right)$ we note that, since the increments of a Brownian motion are independent and identically distributed, then

$$
\begin{align*}
\mathbb{P}\left(B_{n}\right) & \leq \sum_{0 \leq k \leq \operatorname{Tn}} \mathbb{P}\left(Y_{k} \leq 6 M / n\right) \\
& \leq \operatorname{Tn} \mathbb{P}\left(\max \left\{\left|B\left(\frac{3}{n}\right)-B\left(\frac{2}{n}\right)\right|,\left|B\left(\frac{2}{n}\right)-B\left(\frac{1}{n}\right)\right|,\left|B\left(\frac{1}{n}\right)-B(0)\right|\right\} \leq 6 M / n\right) \\
& =\operatorname{Tn}\left[\mathbb{P}\left(\left|B\left(\frac{1}{n}\right)\right| \leq 6 M / n\right)\right]^{3} . \tag{3}
\end{align*}
$$

Finally, we just analyze this probability. We have

$$
\mathbb{P}\left(\left|B\left(\frac{1}{n}\right)\right| \leq 6 M / n\right)=\mathbb{P}(|B(1)| \leq 6 M / \sqrt{n})
$$

Since $B(1)$ which has the standard normal distribution, its density at any point is at most $1 / \sqrt{2 \pi}$, then we have that this probability is at a $\operatorname{most}(2(6 M) / \sqrt{2 \pi n})$. We conclude that the expression in (3) is, ignoring constants, $O\left(n(1 / \sqrt{n})^{3}\right)=$ $O(1 / \sqrt{n})$ and thus converges to zero as $n \rightarrow \infty$. We proved $\lim _{n} \mathbb{P}\left(B_{n}\right)=$ 0 .

2 Bounded quadratic variation of a Brownian motion

Even though Brownian motion is nowhere differentiable and has unbounded total variation, it turns out that it has bounded quadratic variation. This observation is the cornerstone of Ito calculus, which we will study later in this course.

We again start with partitions $\Pi=\Pi\left(t_{0}, \ldots, t_{n}\right)$ of a fixed interval $[0, T]$, but now consider instead

$$
Q(\Pi, B) \triangleq \sum_{1 \leq k \leq n}\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right)^{2}
$$

where, we make (without loss of generality) $t_{0}=0$ and $t_{n}=T$. For every partition Π define

$$
\Delta(\Pi)=\max _{1 \leq k \leq n}\left|t_{k}-t_{k-1}\right| .
$$

Theorem 2. Consider an arbitrary sequence of partitions $\Pi_{i}, i=1,2, \ldots$. Suppose $\lim _{i \rightarrow \infty} \Delta\left(\Pi_{i}\right)=0$. Then

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \mathbb{E}\left[\left(Q\left(\Pi_{i}, B\right)-T\right)^{2}\right]=0 \tag{4}
\end{equation*}
$$

Suppose in addition $\lim _{i \rightarrow \infty} i^{2} \Delta\left(\Pi_{i}\right)=0$ (that is the resolution $\Delta\left(\Pi_{i}\right)$ converges to zero faster than $1 / i^{2}$). Then almost surely

$$
\begin{equation*}
Q\left(\Pi_{i}, B\right) \rightarrow T . \tag{5}
\end{equation*}
$$

In words, the standard Brownian motion has almost surely finite quadratic variation which is equal to T.

Proof. We will use the following fact. Let Z be a standard Normal random variable. Then $\mathbb{E}\left[Z^{4}\right]=3$ (cute, isn't it?). The proof can be obtained using Laplace transforms of Normal random variables or integration by parts, and we skip the details.

Let $\theta_{i}=\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}-\left(t_{i}-t_{i-1}\right)$. Then, using the independent Gaussian increments property of Brownian motion, θ_{i} is a sequence of independent zero mean random variables. We have

$$
Q\left(\Pi_{i}\right)-T=\sum_{1 \leq i \leq n} \theta_{i} .
$$

Now consider the second moment of this difference

$$
\begin{aligned}
\mathbb{E}\left(Q\left(\Pi_{i}\right)-T\right)^{2} & =\sum_{1 \leq i \leq n} \mathbb{E}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{4} \\
& -2 \sum_{1 \leq i \leq n} \mathbb{E}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}\left(t_{i}-t_{i-1}\right)+\sum_{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)^{2} .
\end{aligned}
$$

Using the $\mathbb{E}\left[Z^{4}\right]=3$ property, this expression becomes

$$
\begin{aligned}
& \sum_{1 \leq i \leq n} 3\left(t_{i}-t_{i-1}\right)^{2}-2 \sum_{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)^{2}+\sum_{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)^{2} \\
& =2 \sum_{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)^{2} \\
& \leq 2 \Delta\left(\Pi_{i}\right) \sum_{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right) \\
& =2 \Delta\left(\Pi_{i}\right) T .
\end{aligned}
$$

Now if $\lim _{i} \Delta\left(\Pi_{i}\right)=0$, then the bound converges to zero as well. This establishes the first part of the theorem.

To prove the second part identify a sequence $\epsilon_{i} \rightarrow 0$ such that $\Delta\left(\Pi_{i}\right)=$ ϵ_{i} / i^{2}. By assumption, such a sequence exists. By Markov's inequality, this is
bounded by

$$
\begin{equation*}
\mathbb{P}\left(\left(Q\left(\Pi_{i}\right)-T\right)^{2}>2 \epsilon_{i}\right) \leq \frac{\mathbb{E}\left(Q\left(\Pi_{i}\right)-T\right)^{2}}{2 \epsilon_{i}} \leq \frac{2 \Delta\left(\Pi_{i}\right) T}{2 \epsilon_{i}}=\frac{T}{i^{2}} \tag{6}
\end{equation*}
$$

Since $\sum_{i} \frac{T}{i^{2}}<\infty$, then the sum of probabilities in (6) is finite. Then applying the Borel-Cantelli Lemma, the probability that $\left(Q\left(\Pi_{i}\right)-T\right)^{2}>2 \epsilon_{i}$ for infinitely many i is zero. Since $\epsilon_{i} \rightarrow 0$, this exactly means that almost surely, $\lim _{i} Q\left(\Pi_{i}\right)=T$.

3 Additional reading materials

- Sections 6.11 and 6.12 of Resnick's [1] chapter 6 in the book.

References

[1] S. Resnick, Adventures in stochastic processes, Birkhuser Boston, Inc., 1992.

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

