Chapter 10 Notes, Regression and Correlation

Regression analysis allows us to estimate the relationship of a response variable to a set of predictor variables

Let
$x_{1}, x_{2}, \cdots x_{n} \quad$ be settings of x chosen by the investigator and $y_{1}, y_{2}, \cdots y_{n} \quad$ be the corresponding values of the response.
Assume y_{i} is an observation of rv Y_{i} (which depends on x_{i}, where x_{i} is not random).

We model each Y_{i} by

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

where ϵ_{i} is iid noise with $E\left(\epsilon_{i}\right)=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$. We usually assume that ϵ_{i} is distributed as $N\left(0, \sigma^{2}\right)$, so Y_{i} is distributed as $N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$.

Note: it is not true for all experiments that Y is related to X this way of course! Always scatterplot to check for a straight line.

For a good fit, choose β_{0}, β_{1} to minimize the sum of squared errors.

Minimize

$$
Q=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2} \leftarrow \text { "least squares" }
$$

To minimize Q , set derivatives to 0 and solve for $\beta^{\prime} s$. Call the solutions $\hat{\beta}_{0}$, and $\hat{\beta_{1}}$.

$$
\begin{align*}
& 0=\frac{\partial Q}{\partial \beta_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right) \tag{1}\\
& 0=\frac{\partial Q}{\partial \beta_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right) . \tag{2}
\end{align*}
$$

Rewrite equation (1):

$$
\begin{aligned}
& \sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} \hat{\beta}_{0}-\sum_{i=1}^{n} \hat{\beta}_{1} x_{i}=0 \\
& \sum_{i=1}^{n} y_{i}-n \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}=0 \quad(\text { pull } \beta \text { 's out of the sums) } \\
& \frac{1}{n} \sum_{i=1}^{n} y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} \frac{1}{n} \sum_{i=1}^{n} x_{i}=0 \quad(\text { divide by } n) \\
& \bar{y}-\hat{\beta}_{0}-\hat{\beta}_{1} \bar{x}=0 \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} .
\end{aligned}
$$

What does this mean about the least square line?
Solve equation (2) for $\hat{\beta}_{1}$

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \hat{\beta}_{0}-\sum_{i=1}^{n} x_{i}^{2} \hat{\beta}_{1}=0 \\
& \sum_{i=1}^{n} x_{i} y_{i}-\hat{\beta}_{0} \sum_{i=1}^{n} x_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=0 \\
& \sum_{i=1}^{n} x_{i} y_{i}-\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right) \sum_{i=1}^{n} x_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=0 \quad \text { (using previous page) } \\
& \sum_{i=1}^{n} x_{i} y_{i}-\bar{y} \sum_{i=1}^{n} x_{i}+\hat{\beta}_{1} \frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=0 \quad \text { (using definition of } \bar{x} \text {) } \\
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \text { (using definition of } \bar{y} \text {) }
\end{aligned}
$$

Consider the expressions (which we'll substitute in later):

$$
\begin{aligned}
& \tilde{s}_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} \text { (skipping some steps) } \\
& \tilde{s}_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(\text { just sub in } x \text { for } y \text { in previous eqn) }
\end{aligned}
$$

where $\tilde{s}_{x y}$ is the sample covariance from Chapter 4 times $n-1$. Look what happened:

$$
\hat{\beta}_{1}=\frac{\tilde{s}_{x y}}{\tilde{s}_{x x}}
$$

Put it together with the previous result and we get these two little (but important equations):

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\tilde{s}_{x y}}{\tilde{s}_{x x}} \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

Now there is an easy way to find the LS line.

Given:

$$
\begin{aligned}
& x_{1}, \cdots, x_{n} \\
& y_{1}, \cdots, y_{n}
\end{aligned}
$$

we compute $\bar{x}, \bar{y}, \tilde{s}_{x y}, \tilde{s}_{x y}$. Then compute

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\tilde{s}_{x y}}{\tilde{s}_{x x}} \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} .
\end{aligned}
$$

And the answer is:

$$
y=\hat{\beta}_{1} x+\hat{\beta}_{0} .
$$

Then if you want to make predictions you can use this formula - just plug in the x you want to make a prediction for.

Let's examine the goodness of fit. We will define SSE, SST, and SSR. Consider:

$$
\mathrm{SSE}=\text { sum of squares error }=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

where $\hat{y}_{i}=\hat{\beta}_{1} x_{i}+\hat{\beta}_{0}$, these are your model's predictions. Recall $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ were chosen to minimize the sum of squares error (SSE).

The total sum of squares (SST) measures the variation of y 's around their mean:

$$
\mathrm{SST}=\text { sum of squares total }=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\tilde{s}_{y y}
$$

It turns out:

$$
\begin{aligned}
\mathrm{SST} & =\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=\mathrm{SSE}+\mathrm{SSR}
\end{aligned}
$$

where SSR is called the "regression sum of squares." This is the model's variation around the sample mean.

Consider

$$
r^{2}=\frac{S S R}{S S T}=\frac{\text { model's variation }}{\text { total variation }}=\text { "coefficient of determination." }
$$

It turns out that r^{2} is the square of the sample correlation coefficient $r=\frac{s_{x y}}{\sqrt{s_{x x} s_{y y}}}$. Let's show that. First simplify $S S R$:

$$
\begin{align*}
S S R & =\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n} \hat{\beta}_{0}+\hat{\beta}_{1} x_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}\right)^{2} \text { note that the } \hat{\beta}_{0} \text { 's cancel out } \\
& =\hat{\beta}_{1}^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\hat{\beta}_{1}{ }^{2} \tilde{s}_{x x} . \tag{3}
\end{align*}
$$

And plugging this in,

$$
r^{2}=\frac{S S R}{S S T}=\frac{\hat{\beta}_{1}^{2} \tilde{s}_{x x}}{\tilde{s}_{y y}}=\frac{\tilde{s}_{x y}^{2} \tilde{s}_{x x}}{\tilde{s}_{x x}^{2} \tilde{s}_{y y}}=\frac{\tilde{s}_{x y}^{2}}{\tilde{s}_{x x} \tilde{s}_{y y}}=\frac{s_{x y}^{2}}{s_{x x} s_{y y}},
$$

where we just cancelled a normalizing factor in that last step. So after we take the square root, that shows r^{2} really is the square of the sample correlation coefficient.

Back to $S S T=S S R+S S E$ and $r^{2}=\frac{S S R}{S S T}$. If $r^{2}=0.953$, most of the total variation is accounted for by the regression, so the least square fit is a good fit. That is, r^{2} tells you how much better a regression line is compared to fitting with a flat line at the sample mean \bar{y}.

Note: Compute r using this formula: $\frac{s_{x y}}{\sqrt{s_{x x} s_{y y}}}$, so you do not get the sign wrong from taking the square root, $r= \pm \sqrt{\frac{S S R}{S S T}}$.

To summarize,

- We derived an expression for the LS line

$$
y=\hat{\beta}_{1} x+\hat{\beta}_{0}, \text { where } \hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}} \text { and } \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

- We showed that $r^{2}=\frac{S S R}{S S T}$. Its value indicates how much of the total variation is explained by the regression.

One more definition before we do inference. The variance σ^{2} measures dispersion of the y_{i} 's around their means $\mu_{i}=\beta_{0}+\beta_{1} x_{i}$. An unbiased estimator of σ^{2} turns out to be

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}=\frac{S S E}{n-2}
$$

We lose two degrees of freedom from estimating β_{0} and β_{1}, that is why we divide by $n-2$.

Chapter 10.3 Statistical Inference

We want to make inferences on the values of β_{0} and β_{1}. Assume again that we have:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

where ϵ_{i} is iid noise and is distributed as $N\left(0, \sigma^{2}\right)$. Then it turns out that $\hat{\beta_{0}}$ and $\hat{\beta}_{1}$ are normally distributed with

$$
\begin{aligned}
& E\left(\hat{\beta}_{0}\right)=\beta_{0}, \quad S D\left(\hat{\beta_{0}}\right)=\sigma \sqrt{\frac{n}{i=1} x_{i}^{2}} \frac{n \tilde{S}_{x x}}{\sqrt{\tilde{S}_{x x}}} \\
& E\left(\hat{\beta}_{1}\right)=\beta_{1}, \quad S D\left(\hat{\beta}_{0}\right)=\frac{\sigma}{\sqrt{\tilde{S}_{x}}}
\end{aligned}
$$

It also turns out that S^{2}, which is the random variable for $s^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}$ obeys:

$$
\frac{(n-2) S^{2}}{\sigma^{2}} \sim \chi_{n-2}^{2}
$$

We can do hypothesis tests on β_{0} and β_{1} using $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ as estimators for the means of β_{0} and β_{1}. We can use

$$
\begin{equation*}
S E\left(\hat{\beta}_{0}\right)=s \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n \tilde{s}_{x x}}}, \quad S E\left(\hat{\beta}_{1}\right)=\frac{s}{\sqrt{\tilde{s}_{x x}}} \tag{4}
\end{equation*}
$$

as estimators for the $S D$'s. So we can ask for $100(1-\alpha) \%$ CI for β_{0} and β_{1} :

$$
\begin{aligned}
& \beta_{0} \in\left[\hat{\beta}_{0}-t_{n-2, \alpha / 2} S E\left(\hat{\beta}_{0}\right), \hat{\beta}_{0}+t_{n-2, \alpha / 2} S E\left(\hat{\beta}_{0}\right)\right] \\
& \beta_{1} \in\left[\hat{\beta}_{1}-t_{n-2, \alpha / 2} S E\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+t_{n-2, \alpha / 2} S E\left(\hat{\beta}_{1}\right)\right]
\end{aligned}
$$

Hypothesis tests (usually we do not test hypotheses on β_{0}, just β_{1})

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{1}^{0} \\
& H_{1}: \beta_{1} \neq \beta_{1}^{0} .
\end{aligned}
$$

Reject H_{0} at level $-\alpha$ if

$$
|t|=\frac{\hat{\beta}_{1}-\beta_{1}^{0}}{S E\left(\hat{\beta}_{1}\right)}>t_{n-2, \alpha / 2}
$$

${ }^{* * *}$ Important: If you choose choose $\beta_{1}^{0}=0$, you are testing whether there is a linear relationship between x and y. If you reject $\beta_{1}^{0}=0$, it means y depends on x.

Note that when $\beta_{1}^{0}=0, t=\frac{\hat{\beta_{1}}}{S E\left(\hat{\beta_{1}}\right)}$.

Analysis of Variance (ANOVA)

We're going to do this same test another way. ANOVA is useful for decomposing variability in the y_{i} 's, so you know where the variability is coming from. Recall:

$$
S S T=S S R+S S E
$$

- $S S T$ is the total variability $\left(d f=n-1\right.$ from constraint $\left.\sum_{i=1}^{n}\left(\hat{y_{i}}-\bar{y}\right)^{2}\right)$,
- $S S R$ is the variability accounted for by regression and
- $S S E$ is the error variability $(d f=n-2)$. This leaves one $d f$ for SSR.

A sum of squares divided by df is called a "mean square".

- $M S R=\frac{S S R}{1}$ "mean square regression"
- $M S E=\frac{S S E}{n-2}=s^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}$ "mean square error"

Consider the ratio

$$
\begin{aligned}
F & =\frac{M S R}{M S E}=\frac{S S R}{s^{2}} \\
& =\frac{\hat{\beta}_{1}^{2} \tilde{s}_{x x}}{s^{2}} \text { from }(3) \\
& =\left(\frac{\hat{\beta}_{1}}{s / \sqrt{\tilde{s}_{x x}}}\right)^{2} \\
& =\left(\frac{\hat{\beta}_{1}}{S E\left(\hat{\beta}_{1}\right)}\right)^{2}=t^{2} \quad \text { from }(4)
\end{aligned}
$$

Hey look, the square of a T_{v} r.v is an $F_{1, v}$ r.v. Actually that's always true: Consider:

$$
\begin{aligned}
& T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}=\frac{\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}}{\sqrt{S^{2} / \sigma^{2}}}=\frac{Z}{\sqrt{S^{2} / \sigma^{2}}} \\
& T^{2}=\frac{Z^{2} / 1}{S^{2} / \sigma^{2}}=F_{1, v}
\end{aligned}
$$

since $Z^{2} \sim \chi_{1}^{2}$ and $\frac{S^{2}}{\sigma^{2}} \sim \frac{\chi_{\nu}^{2}}{\nu}$. Therefore we have $t_{n-2, \alpha / 2}^{2}=f_{1, n-2, \alpha}$.
How come $\alpha / 2$ turned into α ?
Back to testing:

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}:
\end{aligned}: \beta_{1}=0
$$

We'll reject H_{0} when $F=\frac{M S R}{M S E}>f_{1, n-2, \alpha}$.
Note: This is just the square of the previous test. We also do it this way because it is a good introduction to multiple regression in Chapter 11.

ANOVA (Analysis of Variance)

ANOVA table - A nice display of the calculations we did.

Source of variation	SS	d.f.	MS	F	p
Regression	SSR	1	$\mathrm{MSR}=\frac{\mathrm{SSR}}{1}$	$F=\frac{\mathrm{MSR}}{\mathrm{MSE}}$	p -value for test
Error	SSE	$n-2$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{n-2}$		
Total	SST	$n-1$			

The pvalue is for the F-test for $H_{0}: \beta_{1}=0, H_{1}: \beta_{1}=0$.

MIT OpenCourseWare
http://ocw.mit.edu

15.075J / ESD.07J Statistical Thinking and Data Analysis

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

