

15.082J & 6.855J & ESD.78J

September 23, 2010

Dijkstra’s Algorithm for the Shortest
	
Path Problem

2

1

Single source shortest path problem

2

3

4

5

6

2

4

21

3

4

2

3

2

1

∞ ∞

∞

∞ ∞
	

Find the shortest path from a source node to

each other node.

Assume: (1) all arc lengths are non-negative

(2) the network is directed

(3) there is a path from the source

node to all other nodes

Overview of today’s lecture
	

 Dijkstra’s algorithm

 animation

 proof of correctness (invariants)

 time bound

 A surprising application (see the book for more)

 A Priority Queue implementation of Dijkstra’s

Algorithm (faster for sparse graphs)

3

A Key Step in Shortest Path Algorithms

� 	 In this lecture, and in subsequent lectures, we let d()
denote a vector of temporary distance labels.

� 	 d(i) is the length of some path from the origin node 1
to node i.

� Procedure Update(i)
for each (i,j) ∈ A(i) do
if d(j) > d(i) + cij then d(j) : = d(i) + cij and pred(j) : = i;

� Update(i)
� used in Dijkstra’s algorithm and in the label

correcting algorithm

4

Update(7)

d(7) = 6 at some point in the algorithm,

because of the path 1-8-2-7

11 8

1 3 2

1 8 2 9 7

0 1 4

8 no change

7

6

9

5

3

2

1

3

Suppose 7 is incident to nodes 9, 5, 3, with

temporary distance labels as shown.

We now perform Update(7).
5

On Updates

Note: distance labels cannot increase in an

update step. They can decrease.

11 8

2

1 3 2

1 8 2 7 5
1

9 7

9

0 1 4 6

3

3

8 no change

We do not need to perform Update(7) again, unless d(7)

decreases. Updating sooner could not lead to further

decreases in distance labels.

In general, if we perform Update(j), we do not do so

again unless d(j) has decreased.
6

Dijkstra’s Algorithm

Let d*(j) denote the shortest path distance from
node 1 to node j.

Dijkstra’s algorithm will determine d*(j) for each j,
in order of increasing distance from the origin
node 1.

S denotes the set of permanently labeled nodes.
That is, d(j) = d*(j) for j ∈ S.

T = N\S denotes the set of temporarily labeled
nodes.

7

Dijkstra’s Algorithm

S : = {1} ; T = N – {1};

d(1) : = 0 and pred(1) : = 0; d(j) = ∞ for j = 2 to n;

update(1);

while S ≠ N do

(node selection, also called FINDMIN)

let i ∈T be a node for which

d(i) = min {d(j) : j ∈ T};

S : = S ∪ {i}; T: = T – {i};

Update(i)

Dijkstra’s Algorithm Animated

8

Invariants for Dijkstra’s Algorithm
	

1.	 If j ∈ S, then d(j) = d*(i) is the shortest distance

from node 1 to node j.

2.	 (after the update step) If j ∈ T, then d(j) is the

length of the shortest path from node 1 to node j

in S ∪ {j}, which is the shortest path length from 1

to j of scanned arcs.

Note: S increases by one node at a time. So, at

the end the algorithm is correct by invariance 1.

9

1

Verifying invariants when S = { 1 }

2

3

4

5

6

2

4

21

3

4

2

3

2

1

0

2 ∞

∞

Consider S = { 1 }
∞4
and after update(1)

1.	 If j ∈ S, then d(j) is the shortest distance from node 1

to node j.

2.	 3. If j ∈ T, then d(j) is the length of the shortest path

from node 1 to node j in S ∪ {j}.

10

Verifying invariants Inductively

2 6

Assume that 2

3

2

4 4

5

the invariants

6

2

2
0are true before 61 a ∞a node 1

2

4
selection

3

d(5) = min {d(j) : j ∈ T}.
3 4

Any path from 1 to 5 passes through a node k of T. The

path to node k has distance at least d(5). So d(5) = d*(5).

Suppose 5 is transferred to S and we carry out Update(5).

Let P be the shortest path from 1 to j with j ∈ T.

If 5 ∉ P, then invariant 2 is true for j by induction. If 5 ∈ P,

then invariant 2 is true for j because of Update(5). 11

A comment on invariants

It is the standard way to prove that algorithms

work.

 Finding the best invariants for the proof is often

challenging.

 A reasonable method. Determine what is true at

each iteration (by carefully examining several

useful examples) and then use all of the

invariants.

 Then shorten the proof later.

12

Complexity Analysis of Dijkstra’s Algorithm
	

 Update Time: update(j) occurs once for each j,
upon transferring j from T to S. The time to
perform all updates is O(m) since the arc (i,j) is
only involved in update(i).

 FindMin Time: To find the minimum (in a
straightforward approach) involves scanning d(j)
for each j ∈ T.
 Initially T has n elements.

 So the number of scans is n + n-1 + n-2 + … + 1 = O(n2).

 O(n2) time in total. This is the best possible only
if the network is dense, that is m is about n2.

 We can do better if the network is sparse.
13

Application 19.19. Dynamic Lot Sizing

 K periods of demand for a product. The demand

is dj in period j. Assume that dj > 0 for j = 1 to K.

 Cost of producing pj units in period j: aj + bjpj

 hj : unit cost of carrying inventory from period j

 Question: what is the minimum cost way of

meeting demand?

 Tradeoff: more production per period leads to

reduced production costs but higher inventory

costs.

14

Application 19.19. Dynamic Lot Sizing (1)

1 2 3 4 K-1 K

0
D

-d1 -d2 -d3 -d4 -dK-dK-1

Flow on arc (0, j): amount produced in period j

Flow on arc (j, j+1): amount carried in inventory from

period j

Lemma: There is production in period j or there is

inventory carried over from period j-1, but not both.

15

Lemma: There is production in period j or there is

inventory carried over from period j-1, but not both.

Suppose now that there is inventory from period j-1

and production in period j. Let period i be the last

period in which there was production prior to period j,

e.g., j = 7 and i = 4.

Claim: There is inventory stored in periods i, i+1, …, j-1

4 5 6 7 K-1 K

0
D

-d4 -d5 -d6 -d7 -dK
16-dK-1

4 5 6 7 K-1 K

0
D

-d4 -d5 -d6 -d7	 -dK-dK-1

Thus there is a cycle C with positive flow. C = 0-4-5-6-7-0.

Let x07 be the flow in (0,7).

The cost of sending D units of flow around C is linear (ignoring the

fixed charge for production). Let Q = b4 + h4 + h5 + h6 – b7.

 If Q < 0, then the solution can be improved by sending a unit of

flow around C.

 If Q > 0, then the solution can be improved by decreasing flow in

C by a little.

 If Q = 0, then the solution can be improved by increasing flow

around C by x07 units (and thus eliminating the fixed cost a7).

 This contradiction establishes the lemma.

Corollary. Production in period i satisfies demands exactly
in periods i, i+1, …, j-1 for some j.

Consider 2 consecutive production periods i and j. Then
production in period i must meet demands in i+1 to j-1.

D

i i+1 i+2 j-1 j

0

-di -dj-di+1 -di+2 -dj-1

Let cij be the (total) cost of this flow.

cij = ai + bi(di + di+1 + … + dj-1)

+ hi + … + dj-1)(di+1 + di+2

+ … + dj-1) + … hj-2)+ hi+1(di+2 + di+3 (dj-1

Let cij be the cost of producing in period i to meet

demands in periods i, i+1, …, j-1 (including cost of

inventory). Create a graph on nodes 1 to K+1, where

the cost of (i,j) is cij.

1 2 3 4 K K+1

Each path from 1 to K+1 gives a production and

inventory schedule. The cost of the path is the cost

of the schedule.

1 6 8 11 K+1

Interpretation: produce in periods 1, 6, 8 and 11.

Conclusion: The minimum cost path from node 1 to

node K+1 gives the minimum cost lot-sizing solution.

Next

 A speedup of Dijkstra’s algorithm if the network

is sparse

 New Abstract Data Type: Priority Queues

20

Priority Queues

 In the shortest path problem, we need to find the

minimum distance label of a temporary node. We

will create a data structure B that supports the

following operations:

1.	 Initialize(B): Given a set T ⊆ N, and given distance

labels d, this operation initializes the data structure B.

2.	 Findmin(B): This operation gives the node in T with

minimum distance label

3.	 Delete(B, j): This operation deletes the element j from

B.

4.	 Update(B, j, δ): This operation updates B when d(j) is

changed to δ.
	

 In our data structure, Initialize will take O(n) steps. Delete

Update, and FindMin will each take O(log n) steps. 21

Storing B in a complete binary tree.

 The number of nodes is n (e.g., 8)

j 1 2 3 4 5 6 7 8

j∈T? no yes yes no yes yes no yes

d(j) -- 12 9 15 11 11

The parent will contain the minimum

distance label of its children.

12 9 15 11 11

22 1 2 3 4 5 6 7 8

Storing B in a complete binary tree.

j 1 2 3 4 5 6 7 8

j∈T? no yes yes no yes yes no yes

d(j) -- 12 9 15 11 11

12 9 15 11 11

12 119 11

23 1 2 3 4 5 6 7 8

Storing B in a complete binary tree.

j 1 2 3 4 5 6 7 8

j∈T? no yes yes no yes yes no yes

d(j) -- 12 9 15 11 11

12 9 15 11 11

12 119 11

9 11

24 1 2 3 4 5 6 7 8

Storing B in a complete binary tree.

j 1 2 3 4 5 6 7 8

j∈T? no yes yes no yes yes no yes

d(j) -- 12 9 15 11 11

12 9 15 11 11

12 119 11

9 11

9 Creating B takes

O(n) steps.

25 1 2 3 4 5 6 7 8

Finding the minimum element

12 9 15 11 11

12 119 11

9 11

9

Start at the top and follow the minimum value

FindMin takes O(log n) steps.

26
 1 2 3 4 5 6 7 8

9

9

9

9

Deleting or inserting or changing an element

Start at the bottom and work upwards Suppose that

node 3 is

12 15 11 11

12 11 11

11

O(log n) steps. deleted from T.

12

11

27
 1 2 3 4 5 6 7 8

Complexity Analysis using Priority Queues

 Update Time: update(j) occurs once for each j,
upon transferring j from T to S. The time to
perform all updates is O(m log n) since the arc
(i,j) is only involved in update(i), and updates
take O(log n) steps.

 FindMin Time: O(log n) per find min.
O(n log n) for all find min’s

 O(m log n) running time

28

Comments on priority queues

 Usually, “binary heaps” are used instead of a

complete binary tree.

 similar data structure

 same running times up to a constant

 better in practice

 There are other implementations of priority

queues, some of which lead to better algorithms

for the shortest path problem.

29

Summary

 Shortest path problem, with

 Single origin

 non-negative arc lengths

 Dijkstra’s algorithm (label setting)

 Simple implementation

 Dial’s simple bucket procedure

 Application to production and inventory control.

 Priority queues implemented using complete

binary trees.

30

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

