15.082J \& 6.855J \& ESD.78J September 23, 2010

Dijkstra's Algorithm for the Shortest Path Problem

Single source shortest path problem

Find the shortest path from a source node to each other node.

Assume: (1) all arc lengths are non-negative
(2) the network is directed
(3) there is a path from the source node to all other nodes

Overview of today's lecture

- Dijkstra's algorithm
- animation
- proof of correctness (invariants)
- time bound
- A surprising application (see the book for more)
- A Priority Queue implementation of Dijkstra's Algorithm (faster for sparse graphs)

A Key Step in Shortest Path Algorithms

- In this lecture, and in subsequent lectures, we let d() denote a vector of temporary distance labels.
- $\mathrm{d}(\mathrm{i})$ is the length of some path from the origin node 1 to node i.
- Procedure Update(i)
for each ($\mathrm{i}, \mathrm{j}) \in \mathrm{A}(\mathrm{i})$ do
if $\mathrm{d}(\mathrm{j})>\mathrm{d}(\mathrm{i})+\mathrm{c}_{\mathrm{ij}}$ then $\mathrm{d}(\mathrm{j}):=\mathrm{d}(\mathrm{i})+\mathrm{c}_{\mathrm{ij}}$ and $\operatorname{pred}(\mathrm{j}):=\mathrm{i}$;
- Update(i)
- used in Dijkstra's algorithm and in the label correcting algorithm

Update(7)

$d(7)=6$ at some point in the algorithm, because of the path 1-8-2-7

Suppose 7 is incident to nodes $9,5,3$, with temporary distance labels as shown.

We now perform Update(7).

On Updates

Note: distance labels cannot increase in an update step. They can decrease.

We do not need to perform Update(7) again, unless $\mathrm{d}(7)$ decreases. Updating sooner could not lead to further decreases in distance labels.

In general, if we perform Update(j), we do not do so again unless $\mathrm{d}(\mathrm{j})$ has decreased.

Dijkstra's Algorithm

Let $\mathrm{d}^{*}(\mathrm{j})$ denote the shortest path distance from node 1 to node j.

Dijkstra's algorithm will determine d*(j) for each j, in order of increasing distance from the origin node 1.

S denotes the set of permanently labeled nodes. That is, $\mathrm{d}(\mathrm{j})=\mathrm{d} *(\mathrm{j})$ for $\mathrm{j} \in \mathbf{S}$.

T = NIS denotes the set of temporarily labeled nodes.

Dijkstra's Algorithm

$S:=\{1\} ; \quad T=N-\{1\} ;$
$\mathrm{d}(1):=0$ and $\operatorname{pred}(1):=0 ; \mathrm{d}(\mathrm{j})=\infty$ for $\mathrm{j}=2$ to n ;
update(1);
while \mathbf{S} = \mathbf{N} do
(node selection, also called FINDMIN)
let $\mathbf{i} \in \mathbf{T}$ be a node for which $\mathrm{d}(\mathrm{i})=\min \{\mathrm{d}(\mathrm{j}): \mathrm{j} \in \mathrm{T}\}$; S:= S $\cup\{i\} ;$ T: = T - $\{i\} ;$
Update(i)

Dijkstra's Algorithm Animated

Invariants for Dijkstra's Algorithm

1. If $\mathrm{j} \in \mathrm{S}$, then $\mathrm{d}(\mathrm{j})=\mathrm{d}^{\star}(\mathrm{i})$ is the shortest distance from node 1 to node j.
2. (after the update step) If $\mathrm{j} \in \mathrm{T}$, then $\mathrm{d}(\mathrm{j})$ is the length of the shortest path from node 1 to node j in $S \cup\{j\}$, which is the shortest path length from 1 to j of scanned arcs.

Note: S increases by one node at a time. So, at the end the algorithm is correct by invariance 1.

Verifying invariants when $S=\{1\}$

Consider S = \{ 1 \} and after update(1)

1. If $\mathrm{j} \in \mathrm{S}$, then $\mathrm{d}(\mathrm{j})$ is the shortest distance from node 1 to node j .
2. 3. If $\mathrm{j} \in \mathrm{T}$, then $\mathrm{d}(\mathrm{j})$ is the length of the shortest path from node 1 to node j in $\mathrm{S} \cup\{\mathrm{j}\}$.

Verifying invariants Inductively

Assume that the invariants are true before a node selection
$\mathrm{d}(5)=\min \{\mathrm{d}(\mathrm{j}): \mathrm{j} \in \mathrm{T}\}$.

Any path from 1 to 5 passes through a node k of T. The path to node k has distance at least $d(5)$. So $d(5)=d^{\star}(5)$.

Suppose 5 is transferred to S and we carry out Update(5). Let P be the shortest path from 1 to j with $\mathrm{j} \in \mathrm{T}$.

If $5 \notin P$, then invariant 2 is true for j by induction. If $5 \in P$, then invariant 2 is true for j because of Update(5).

A comment on invariants

It is the standard way to prove that algorithms work.

- Finding the best invariants for the proof is often challenging.
- A reasonable method. Determine what is true at each iteration (by carefully examining several useful examples) and then use all of the invariants.
- Then shorten the proof later.

Complexity Analysis of Dijkstra's Algorithm

- Update Time: update(j) occurs once for each j, upon transferring j from T to S . The time to perform all updates is $O(m)$ since the arc (i, j) is only involved in update(i).
- FindMin Time: To find the minimum (in a straightforward approach) involves scanning $d(j)$ for each $\mathrm{j} \in \mathrm{T}$.
- Initially T has n elements.
- So the number of scans is $n+n-1+n-2+\ldots+1=O\left(n^{2}\right)$.
- $O\left(n^{2}\right)$ time in total. This is the best possible only if the network is dense, that is m is about n^{2}.
- We can do better if the network is sparse.

Application 19.19. Dynamic Lot Sizing

- K periods of demand for a product. The demand is d_{j} in period j . Assume that $\mathrm{d}_{\mathrm{j}}>0$ for $\mathrm{j}=1$ to K .
- Cost of producing p_{j} units in period $j: a_{j}+b_{j} p_{j}$
$-h_{j}$: unit cost of carrying inventory from period j
- Question: what is the minimum cost way of meeting demand?
- Tradeoff: more production per period leads to reduced production costs but higher inventory costs.

Application 19.19. Dynamic Lot Sizing (1)

Flow on arc ($0, \mathrm{j}$): amount produced in period j
Flow on arc ($\mathbf{j}, \mathrm{j}+1$): amount carried in inventory from period \mathbf{j}

Lemma: There is production in period j or there is inventory carried over from period $\mathbf{j}-1$, but not both.

Lemma: There is production in period j or there is inventory carried over from period $\mathrm{j}-1$, but not both. Suppose now that there is inventory from period $\mathrm{j}-1$ and production in period j. Let period i be the last period in which there was production prior to period j, e.g., $\mathrm{j}=7$ and $\mathrm{i}=4$.

Claim: There is inventory stored in periods $\mathbf{i}, \mathbf{i}+1, \ldots, j-1$

Thus there is a cycle C with positive flow. $\mathrm{C}=0-4-5-6-7-0$. Let x_{07} be the flow in $(0,7)$.

The cost of sending Δ units of flow around C is linear (ignoring the fixed charge for production). Let $Q=b_{4}+h_{4}+h_{5}+h_{6}-b_{7}$.

- If $Q<0$, then the solution can be improved by sending a unit of flow around C.
- If $Q>0$, then the solution can be improved by decreasing flow in C by a little.
- If $\mathbf{Q}=0$, then the solution can be improved by increasing flow around C by x_{07} units (and thus eliminating the fixed cost a_{7}).
- This contradiction establishes the lemma.

Corollary. Production in period i satisfies demands exactly in periods $\mathbf{i}, \mathbf{i}+1, \ldots, j-1$ for some \mathbf{j}.

Consider 2 consecutive production periods i and j. Then production in period i must meet demands in $\mathrm{i}+1$ to $\mathrm{j}-1$.

Let c_{ij} be the (total) cost of this flow.

$$
\begin{aligned}
c_{i j}= & a_{i}
\end{aligned}+b_{i}\left(d_{i}+d_{i+1}+\ldots+d_{j-1}\right) .
$$

Let c_{ij} be the cost of producing in period i to meet demands in periods $\mathrm{i}, \mathrm{i}+1, \ldots, \mathrm{j}-1$ (including cost of inventory). Create a graph on nodes 1 to $\mathrm{K}+1$, where the cost of (i, j) is c_{ij}.

Each path from 1 to $\mathrm{K}+1$ gives a production and inventory schedule. The cost of the path is the cost of the schedule.

Interpretation: produce in periods 1, 6, 8 and 11.
Conclusion: The minimum cost path from node 1 to node $\mathrm{K}+1$ gives the minimum cost lot-sizing solution.

Next

- A speedup of Dijkstra's algorithm if the network is sparse
- New Abstract Data Type: Priority Queues

Priority Queues

- In the shortest path problem, we need to find the minimum distance label of a temporary node. We will create a data structure B that supports the following operations:

1. Initialize(B): Given a set $\mathbf{T} \subseteq \mathbf{N}$, and given distance labels d, this operation initializes the data structure B.
2. Findmin(B): This operation gives the node in T with minimum distance label
3. Delete(B, $\mathbf{j})$: This operation deletes the element \mathbf{j} from B.
4. Update($B, j, \delta):$ This operation updates B when $d(j)$ is changed to δ.

- In our data structure, Initialize will take O(n) steps. Delete Update, and FindMin will each take O(log n) steps.

Storing B in a complete binary tree.

- The number of nodes is \mathbf{n} (e.g., 8)

j	1	2	3	4	5	6	7	8
$\mathrm{j} \in \mathrm{T}$?	no	yes	yes	no	yes	yes	no	yes
$\mathrm{d}(\mathrm{j})$	--	12	9		15	11		11

The parent will contain the minimum distance label of its children.

Storing B in a complete binary tree.

j	1	2	3	4	5	6	7	8
$\mathrm{j} \in \mathrm{T}$?	no	yes	yes	no	yes	yes	no	yes
$\mathrm{d}(\mathrm{j})$	--	12	9		15	11		11

Storing B in a complete binary tree.

j	1	2	3	4	5	6	7	8
$\mathrm{j} \in \mathrm{T}$?	no	yes	yes	no	yes	yes	no	yes
$\mathrm{d}(\mathrm{j})$	--	12	9		15	11		11

Storing B in a complete binary tree.

j	1	2	3	4	5	6	7	8
$j \in T$?	no	yes	yes	no	yes	yes	no	yes
$d(j)$	--	12	9		15	11		11

Finding the minimum element
Start at the top and follow the minimum value
FindMin takes $O(\log n)$ steps.

Deleting or inserting or changing an element

Suppose that node 3 is deleted from T.

Start at the bottom and work upwards

O(log n) steps.

Complexity Analysis using Priority Queues

- Update Time: update(j) occurs once for each j, upon transferring j from T to S . The time to perform all updates is $\mathbf{O}(\mathrm{m} \log \mathrm{n})$ since the arc (i, j) is only involved in update(i), and updates take $O(\log n)$ steps.
- FindMin Time: $\mathbf{O}(\log n)$ per find min. O($n \log n$) for all find min's
- $\mathrm{O}(\mathrm{m} \log \mathrm{n})$ running time

Comments on priority queues

- Usually, "binary heaps" are used instead of a complete binary tree.
- similar data structure
- same running times up to a constant
- better in practice
- There are other implementations of priority queues, some of which lead to better algorithms for the shortest path problem.

Summary

- Shortest path problem, with
- Single origin
- non-negative arc lengths
- Dijkstra's algorithm (label setting)
- Simple implementation
- Dial's simple bucket procedure
- Application to production and inventory control.
- Priority queues implemented using complete binary trees.

MIT OpenCourseWare
http://ocw.mit.edu
15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

