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Review of the Ford-Fulkerson Algorithm

x := 0;

create the residual network G(x);

while there is some directed path from s to t in G(x) do

let P be a path from s to t in G(x);

* := (P);

send * units of flow along P; 

update the r's;

Max-Flow Min-Cut. Let x* be the final flow with flow value v*.

Let S* = {j ∈ N : s ➔ j in G(x*)}.  Let T* = N\S*.

Then x* is a max flow, and (S*, T*) is a minimum cut, 

and v* = CAP(S*, T*) 



Overview of this lecture

1. Applications of max flow and min cut

2. Speedups of the max flow augmenting path 

algorithm
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Matchings

An undirected network 
G = (N, A) is bipartite if N 
can be partitioned into N1

and N2 so that for every 
arc (i,j), i ∈ N1 and j ∈ N2.

A matching in N is a set 
of arcs no two of which 
are incident to a 
common node.

Matching Problem:  Find 
a matching of maximum 
cardinality
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Node Covers

A node cover is a subset 
S of nodes such that each 
arc of G is incident to a 
node of S.

Node Cover Problem:  
Find a node cover of 
minimum cardinality.
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Matching Duality Theorem
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Theorem. König-
Egerváry.   The maximum 
cardinality of a matching 
is equal to the minimum 
cardinality of a node 
cover.  (Proof in 4 slides)

Note. Every node cover 
has at least as many 
nodes as any matching 
because each matched 
edge is incident to a 
different node of the 
node cover.
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How to find a minimum node cover
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INPUT:   

original problem

Transform into a 

max flow problem

Solve the max 

flow problem

Find the 

minimum cut

Use the cut to find the 

minimum node cover
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Solving the Matching Problem as a 

Max Flow Problem
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s t

Each arc (s, i) has a capacity of 1.

Each arc (j, t) has a capacity of 1.

Replace original 

arcs by directed 

arcs with infinite 

capacity.
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Find a max flow
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The maximum s-t flow is 4.

The max matching has cardinality 4.
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Determine the minimum cut

1

2

3

4

5

6

7

8

9

10

s t

S = {s, 1, 3, 4, 6, 8}.    T = {2, 5, 7, 9, 10, t}.

There is no arc from {1, 3, 4} to {7, 9, 10} or from {6, 8} to 

{2, 5}.    Any such arc would have an infinite capacity.
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Find the min node cover
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The minimum node cover is the set of nodes incident to 

the arcs across the cut.   Max-Flow Min-Cut implies the 

duality theorem for matching.
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Philip Hall’s Theorem
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Theorem.  Hall’s Theorem.  If there is no perfect matching, 

then there is a set S of nodes of N1 such that |S| > |T| 

where T are the nodes of N2 adjacent to S.
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Generalization of Hall’s Theorem:  

Feasibility for min cost flows

Let G = (N, A) be a network

• bj = supply/demand for node i.      ∑i bi = 0.

• uij = upper bound on flow in (i, j)

• assume that all lower bounds are 0
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Theorem:  Either there is a feasible flow in G or 

else there is a subset S of nodes such that 

∑i∈S bi >  CAP(S, T).

S T T = N\S
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Network Reliability

 Communication Network  

 What is the maximum number of arc disjoint 

paths from s to t?  

 How can we determine this number?

Theorem.  Let G = (N,A) be a directed graph.  Then 

the maximum number of arc-disjoint paths from s 

to t is equal to the minimum number of arcs upon 

whose deletion there is no directed s-t path.
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There are 3 arc-disjoint s-t paths

s t
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Deleting 3 arcs disconnects s and t

t
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Let S = {s, 3, 4, 8}.   The only arcs from S to 

T = N\S are the 3 deleted arcs.
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Node disjoint paths

Two s-t paths P and P' f are said to be node-
disjoint if the only nodes in common to P and P' 
are s and t).  

How can one determine the maximum number of 
node disjoint s-t paths? 

Answer: node splitting

Theorem. Let G = (N,A) be a network with no arc 
from s to t. The maximum number of node-
disjoint paths from s to t equals the minimum 
number of nodes in N\{s,t} whose removal from G 
disconnects all paths from nodes s to node t.
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There are 2 node disjoint s-t paths.

s t
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Deleting 5 and 6 disconnects t from s.

t
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Let S = {s, 1, 2, 3, 4, 8}

Let T = {7, 9, 10, 11, 12, t}

There is no arc directed 

from S to T.



Mental Break

What did ancient Egyptians shave to mourn the death of 

their cats?

Their eyebrows.

In what country are the ruins of Troy located?

Turkey

At the height of its power (around 400 BCE), Sparta had 

25,000 citizens.  How many slaves did it have?

500,000.



In ancient Rome, being born with a crooked nose was 

considered a sign.  What was it a sign of?

Leadership.

The Roman emperor Caligula gave a special honor to his 

horse.  What was the honor?

He made his horse a senator.

How long did it take for the great wall of China to be built.

Around 1900 years. From 5th century BC to the 16th 

century.   The wall is around 3900 miles long.  It is not visible 

to the human eye from space.

Mental Break



Speedups of the augmenting path algorithm

1. Shortest augmenting path algorithm:  always 

augment along the path in G(x) with the fewest 

number of arcs.-

2. Largest augmenting path algorithm:  always 

augment along a path in G(x) with the greatest 

capacity.

22



The shortest augmenting path algorithm

x := 0;

create the residual network G(x);

while there is some directed path from s to t in G(x) do

let P be a path from s to t in G(x) with the fewest number of arcs;

* := (P);

send * units of flow along P; 

update the r's;
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Theorem. The shortest augmenting path algorithm 

determines a maximum flow in O(nm) augmentations.

This algorithm can be implemented to run in O(n2m) 

time.



Distance Labels:  Let d(i) be the length of 

the shortest path from i to t in G(x)
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FACT 1:   If (i, j)∈ G(x), then d(i) ≤ d(j) + 1. 

FACT 2:   Arc (i, j) is on a shortest path from i to t

if and only if d(i) = d(j) + 1. 

FACT 3:   d(t) = 0;   d(i) < n for all i   s.t.  i ➔ t in G(x).  



Valid Arcs and Saturating Pushes
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An arc (i, j) ∈ G(x) 

is valid if 

d(i) = d(j) + 1. 
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FACT:  If P is an 

augmenting path, 

then every arc of 

P is valid. 

Suppose δ units of flow are sent along P.  The 

augmentation saturates arc (i, j) ∈ P if rij = δ.  



The number of augmenting paths

Theorem. The number of augmenting paths for the 

shortest augmenting path algorithm is O(nm).
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Fact.  In every augmenting path, at least one arc 

(i, j) is saturated.

Proof of theorem.  Let aij be the number of times that 

arc (i, j) is saturated.  Let A be the number of 

augmentations.

Then A ≤ ∑(i,j)∈A 2aij ≤ ∑(i,j)∈A n  ≤ nm.

Lemma 1. Arc (i, j) and its reversal (j, i) can be 

saturated at most n/2 times each.  (To be proved 

later.)



Proof of Lemma 1.   Each arc (i, j) is 

saturated fewer than n times.

Lemma 2. Let d be the distance labels an iteration 

where arc (i, j) is saturated.  Suppose that d’ is the 

vector of distance labels at a subsequent iteration 

where (i, j) is saturated.  Then n > d’(i) ≥ d(i) + 2.  

(to be proved on next slide).

Proof of Lemma 1 from Lemma 2. Before (i, j) can be 

saturated again, its distance label will increase by 

at least 2.  Since 0 < d(i) < n, the distance label can 

increase at most n/2 times.      
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Proof of Lemma 2.

Lemma 3. Let d be the distance labels at some iteration, and let 

d’ be the distance labels at a subsequent iteration.  

Then d’(i) ≥ d(i) for all i ∈ N.      (to be proved on next slide)
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Proof of Lemma 2 from Lemma 3. Suppose that (i, j) is saturated 

when d(i) = k.  There is no more flow in (i, j) until flow is sent in 

(j, i) at which point the distance label of j is k+1.   But flow 

cannot be returned in (i, j) until it is valid again, and the distance 

label is at least k+2.
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Proof of Lemma 3.

Assume that Lemma 3 is false.  Let d be the distance 

labels at some iteration.  Let P be the augmenting 

path.  After the augmentation, the reversals of arcs in 

P are in the residual network.  But adding these arcs 

to G(x) does not decrease any distance.  And deleting 

arcs of P cannot decrease a distance label. 
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s-3-5-8-t.
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Largest Augmenting Path Algorithm

Theorem.  (Edmonds-Karp).  Suppose that one 

augments along the augmentation with the 

largest residual capacity.  Then the maximum 

flow is determined after O(m log U) augmenting 

paths.

Running time: The time to find the maximum 

augmenting path is O(m log m).   (Why?)

Thus the total running time is O(m2 log m log U)
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Finding the largest augmenting path

Step 1. Sort the capacities in the residual network.  

Suppose that sorted capacities are c1, c2, …, c2m.

Step 2.  Let Gj(x’) be the residual network as 

restricted to arcs with capacity at least cj.

Step 3.  Use binary search to find the largest value j 

so that there is a path from s to t in Gj(x’).
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Notation for the proof of the theorem:   Let v* be the 

maximum flow value out of s. Let vk be the amount of 

flow out of s immediately prior to the k-th 

augmentation. 

Let ak be the capacity of the k-th augmentation.



Lemma 4 and Lemma 5.

Proof of Theorem from Lemma 5.  The largest initial 

augmentation is at most U.  

Then ak ≤ U/2 for some k ≤ 2m.

Then ak ≤ U/4 for some k ≤ 4m.

One can show using induction that

ak < 1  for some k ≤ 2m(⎡log U⎤+1).  

But capacities are always integer valued.  So, there are at 

most  2m (log U+1) augmentations.   
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Lemma 5.  For all k, there exists k’ < k + 2m such that ak’ < ak/2.  

Lemma 4.  For all k, ak ≥ (v* - vk)/m. 



Proofs of Lemmas 4 and 5
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Proof of Lemma 4.  Let x’ be the arc flows prior to the k-th 

iteration.  Then the max flow out of s in G(x’) is (v* - v’).   

Let y be the maximum flow in G(x’).   The flow 

decomposition of y has most m paths from s to t.   The 

sum of these flows is (v* - v’) and so the maximum of the 

capacities of these paths is at least (v* - v’)/m.

Proof of Lemma 5.  Suppose that the theorem is false.  

Suppose that aj > ak/2 for j = k to k+2m.  The total amount 

of flow sent from s during these iterations is greater than 

2m(ak/2)  > v* - vk.

This is impossible, and so the lemma is true.  



Geometric convergence arguments

Lemma 5. Suppose that any algorithm for a maximization 

problem has objective value vk at iteration k, and let v* 

be the optimum value.  Suppose there is some positive 

integer B such that for all k, 

(vk+1 – vk) ≥ (v* - vk)/B.      Then for all k:

(vk+2B – vk) > (v* - vk)/2.
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Proof by contradiction. Let ak = vk+1 – vk.   Suppose that 

(vk+2B – vk) ≤ (v* - vk)/2.   By assumption:

for each j from k to k+2B,  

aj = (vj+1 – vj) ≥ (v* - vj)/B ≥  (v* - vk)/2B.  Then
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Summary

• Applications of max-flow min-cut

• Analysis of Shortest Augmenting Path Algorithm

• Distance labels

• Analysis of Largest Augmenting Path Algorithm

• Geometric convergence arguments.
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