
15.082J and 6.855J and ESD.78J

October 19, 2010

Max Flows 3

Preflow-Push Algorithms

2

Review of Augmenting Paths

At each iteration: maintain a flow x.

Let G(x) be the residual network.

At each iteration, find a path from s to t in G(x).

In the shortest augmenting path algorithm, we kept

distance labels d(), and we sent flow along the

shortest path in G(x).

This lecture: present and analyze a different type of

max flow algorithm called preflow-push. New

analysis technique: potential functions.

3

Flows vs. Preflows

Augmenting Path

Algorithm

Flow into i = Flow out of i

Push flow along a path from

s to t

d(j) = distance from j to t in

the residual network.

Preflow Algorithm

Flow into i ≥ Flow out of i

for i ≠ s.

Push flow in one arc at a time

d(j) ≤ distance from j to t in the

residual network

 d(t) = 0

 d(i) ≤ d(j) + 1 for each arc

(i, j) ∈ G(x),

4

Preflows

At each intermediate stages we permit more flow
arriving at nodes than leaving (except for s)

A preflow is a function x: A → R s.t. 0 ≤ x ≤ u and
such that

e(i) = ∑j∈N xji - ∑j∈N xij ≥ 0,
for all i ∈ N – {s, t}.

i.e., e(i) = excess at i = net excess flow into node i.
The excess is required to be nonnegative.

5

A Feasible Preflow

The excess e(j) at each node j ≠ s, t is the flow in minus

the flow out.

s

3

4

2 5

t

3

3

3

2

2

2

2

1

2

1

0

0

Note: total excess = flow out of s minus flow into t.

6

Distance Labels

Distance labels d() are valid for G(x) if

i. d(t) = 0

ii. d(i) ≤ d(j) + 1 for each (i, j) ∈ G(x)

Defn. An arc (i, j) is admissible if rij > 0
and d(i) = d(j) + 1.

Lemma. Let d() be a valid distance label. Then d(i)
is a lower bound on the distance from i to t in the
residual network.

i t

P = the shortest path from i to t in G(x)

d() 01234 23

7

Distance labels and gaps

We say that there is a gap at a distance level k (0 < k < n) if

there is no node with distance label k.

Lemma. Suppose there is a gap at distance level k. Then

for any node j with d(j) > k, there is no path from j to t in

the residual network.

Proof. The shortest path from j to t would have to pass

through a node whose distance level is k.

i t

P = the shortest path from i to t in G(x)

d() 01234 23

8

Active nodes in the residual network

A node j in G\{s} is active if:

• e(j) > 0 and

• there is no gap at a distance level less than d(j)

The preflow push algorithm will push flow from active

nodes “towards the sink”, relying on d().

6

3

1

2 1

0

2

1

0

4

2

7

s t

k d() = k

w e() = w

9

Push/Relabel, the fundamental subroutine

Suppose we have selected an active node i.

Procedure Push/Relabel(i)

begin

if the network contains an admissible arc (i, j) then

push : = min{ e(i), rij } units of flow from i to j;

else replace d(i) by min{d(j) + 1 : (i, j) ∈ A(i) and rij > 0}

end;

10

Pushing using current arcs

Tail Head Res.

Cap

Admissible

?

4 1 0 No

4 2 1 No

4 3 4 Yes

4 5 0 No

4 6 2 Yes

Suppose that

node 4 is

active, and has

excess.

3 4

1 2

3

56

1 3

2

22

e(4) = 2

Scan arcs in A(4) one at a

time using “Current Arc”

till an admissible arc is

found.

Push on (4,3)

Pushing on (4,3)

11

Tail Head Res.

Cap

Admissible

?

4 1 0 No

4 2 1 No

4 3 4 Yes

4 5 0 No

4 6 2 Yes

3 4

1 2

3

56

1 3

2

22

e(4) = 2

Push on (4,3)

e(3) = 1

Send min (e(4), r43) = 2

units of flow.

2

e(4) = 0 e(3) = 3

For the next push from

node 4, start with arc (4,3).

Update the residual

capacities and excesses.

12

Goldberg-Tarjan Preflow Push Algorithm

Procedure Preprocess

x :=0;

compute the exact distance labels d(i) for each node;

xsj := usj for each arc (s, j) ∈ A(s); d(s) := n;

Preflow Push

Animation

Algorithm PREFLOW-PUSH;

preprocess;

while there is an active node i do

select an active node i;

push/relabel(i);

convert the max preflow into a max flow

Note: the “while loop” ends when there are no active

nodes; i.e., if e(j) > 0, then d(j) is above a gap.

13

Preview of Results on Goldberg-Tarjan

Preflow Push

The GT algorithm is superb both in theory and in practice.

Suppose that the flow into t is v* after the “while loop.”

We will show the following:

1. Distance labels stay valid after a push and after a relabel. They

never go down in a relabel.

2. It is possible to convert the preflow into an s-t flow with a

feasible flow out of s (and into t) equal to v*.

3. The algorithm determines a cut with

 the algorithm determines a preflow with max flow into t

 the algorithm determines a minimum s-t cut

4. The running time of the algorithm is O(n2m)

14

Distance labels remain valid

0

k

k-1

1

t

i

j

Suppose that we push flow in (i, j) when d(i) = k

and d(j) = k - 1.

Validity remains satisfied for all arcs of G(x).

And it is also satisfied for arc (j, i). That is,

d(j) ≤ d(i) + 1 = k+1.

Let x be the flow before the push.

Let x’ be the flow after the push.

There is at most one arc in G(x’) that is not

in G(x), and that arc is (j, i)

Before a relabel of node i, the distance

labels are valid, but no arc out of i is

admissible. So, in a relabel of node i, d(i)

must increase.

15

Converting any preflow into a flow

Let x’ be any preflow at some stage of the algorithm.

Express x’ using flow decomposition.

s

3

2

2 1

t

2

1

0

2

3

4

10

6

4

5

4

0
2

4

2

4

2

-15

Note: s is the only node with deficit.

FlowPath

s-4 2

s-3-2-1 2

s-3 1

s-4-1-t 4

s-2-t 4

s-3-t 2

The feasible flow is the sum of the flows on paths from s to t.

The flow into t is the same for the flow and preflow.

16

Finding the minimum cut

 Let d*() be the distance labels at the end of the

algorithm.

 Let k* be the minimum positive value such that

there is a gap at level k*.

 Let S* = {j : d*(j) < k*}. Let T* = {j : d(j*) > k*}.

Theorem. (S*, T*) is a minimum capacity cut, and

the capacity of the cut is the amount of flow into t.

17

The minimum cut

There is no arc (i, j) from S* to T* in

G(x*) because for each arc (i, j) ∈ G(x*)

d(i) ≤ d(j) + 1.

• If i ∈ S* and j ∈ T*, then x*ij = uij

• If i ∈ T* and j ∈ S*, then x*ij = 0

There is no excess at a node

of T* because the algorithm

terminated.

0

k*+1

k*

k*-1

2

1

t

sn

n+1 S*

T*

i

j e(j) = 0

The flow v* into t is

v* = CAP(S*, T*) because any flow

across the cut must go to t. (Same

as in proof of max-flow min-cut).

18

Something happened to the actors in the first English play

in America. What was it?

They were arrested. Acting was considered evil.

What was the first country to give women the vote?

New Zealand, in 1890.

The first phone book ever issued was in New Haven, CT.

How many names were in the book?

50. It was published in 1878.

Mental Break

19

In London, in the 1700s, one could purchase insurance for a

particularly catastrophic event. But it was not clear how one

could prove the event happened. What was the event?

One could insure against going to Hell.

Bobby Beach survived a barrel ride over Niagara Falls. He died

many years later. What was the cause of his death?

He slipped on a banana peal.

Native Americans did not eat turkey at the time of the Pilgrims.

Why not?

They thought that killing such a timid bird indicated laziness.

Mental Break

20

Finiteness and Running Time

Lemma 1. The time to relabel all nodes is O(nm).

Lemma 2. The number of saturating pushes is
O(nm).

Lemma 3. The time spent scanning arcs that are
not admissible is O(nm).

Lemma 4. The number of non-saturating pushes is
O(n2m).

Theorem. The preflow push algorithm is finite. Its
running time is O(n2m).

21

Proof of Lemma 1

0

k*+1

k*

k*-1

2

1

n

n+1

i

t

If d(i) ≥ n, then there must be a gap at some

distance level less than n because there are at

most n-2 remaining nodes.

So, each node is relabeled at most n times.

The time to relabel nodes 1 to n at most once

is O(m) since each arc out of node j must be

scanned for each j.

Conclusion: the time to relabel each nodes 1

to n at most n times is O(nm)

22

Proof of Lemma 2

Suppose that (i, j) is saturated when d(i) = k. It

cannot be saturated again until d(i) ≥ k+2.

There is no capacity in (i, j) until flow is sent in

(j, i). At that point d(j) ≥ k + 1.

But (i, j) cannot be saturated again until it is

admissible. Then d(i) = d(j) + 1 ≥ k + 2.

Conclusion: each arc (i, j) is saturated at most

n/2 times. The number of saturating pushes is

O(nm) and the running time for saturating

pushes is O(nm).0

k+1

k

k-1

2

1

t

k+2

i

j

23

Lemma 3 and scanning arcs.

Tail Head Res.

Cap

Admissible

?

4 1 0 No

4 2 1 No

4 3 4 Yes

4 5 0 No

4 6 2 Yes

3 4

1 2

3

56

1 3

2

22

e(4) = 2 e(3) = 1

Arcs in A(i) are scanned in

order. If arc (i, j) is not

admissible, it cannot

become admissible until i

is relabeled again.

e.g., arc (4, 1) has no

capacity. It cannot get

capacity until flow is sent

in (1, 4) at which point d(1)

is at least 4.

e.g., arc (4, 2) has capacity

but it is not admissible. It

will not become admissible

until d(4) increases.

24

Proof of Lemma 3

Tail Head Res.

Cap

Admissible

?

4 1 0 No

4 2 1 No

4 3 4 Yes

4 5 0 No

4 6 2 Yes

3 4

1 2

3

56

1 3

2

22

e(4) = 2 e(3) = 1

2

e(4) = 0 e(3) = 3

Each inadmissible arc in

A(i) is scanned at most

once between relabels.

Each arc (i, j) is scanned at

most n/2 times when it is

inadmissible.

The running time to scan

inadmissible arcs is O(nm).

25

Running time analysis, so far.

Time for initialization: O(m)

Time for Sat pushes and updates of r O(nm)

Time for relabels O(nm)

Time for scanning inadmissible arcs O(nm)

Time for nonsat pushes and updates of r ?

We will use a different type of running time analysis using

potential functions with an analogy to gamblers.

26

Bounding the number of losing bets

Example. John is a gambler. On each bet, he can lose

up to $L dollars and win up to $W. When John loses,

he always loses at least $1. Suppose that

 John starts with at most $D

 the number of times that he wins bets is at most n.

What is an upper bound on the number K of times that

John loses a bet.

Final amount = Initial Amount + Winnings - Losses

K ≤ Losses = Initial Amount +

Winnings - Final Amount.

Formula 1: Losses = Initial Amount + Winnings - Final amount

K ≤ D + nW - 0.

Use Formula 1 to bound the number of bets at which the

gambler loses.

27

Potential Functions for Preflow-Push

Let Φ(x) be a function that depends on the residual network

G(x). We will call Φ a potential function.

For example, Φ(x) = ∑j active d(j).

Let Φk = Φ(xk), where xk is the flow in the residual network

immediately prior to the k-th step of the algorithm.

Let δk = Φk+1 - Φk. dk() = distance labels prior to the k-th step.

View that Φk is the amount that gambler John has prior to the k-th

bet. Then δk is the win or loss for John at the k-th bet.

We will use Formula 1 to bound nonsaturating pushes.

Losses in potential = Initial potential + gains in potential

- Final potential

28

Bounds on δk

Consider the case that the k-th

step is a nonsaturating push

in arc (u,v).

Φk = ∑j ∈ Active(k) dk(j)

Φk+1 = ∑j ∈ Active(k+1) dk+1(j).

vu
before

step k

e(u) > 0 e(v) ≥ 0

u

e(u) = 0

v
after

step k

e(v) > 0

δk = Φk+1 - Φk = dk+1(v) - dk(u) - (0 or d(v))

≤ dk(v) - dk(u) = -1.

Let NSAT be the number of nonsaturating pushes.

NSAT ≤ Losses

dk+1 = dk

29

Bounds on δk

Φk = ∑ j ∈ Active(k) dk(j)

Φk+1 = ∑j ∈ Active(k+1) dk+1(j).

vu
before

step k

e(u) > 0 e(v) ≥ 0

u

e(u) ≥ 0

v
after

step k

e(v) > 0

δk = Φk+1 - Φk = dk+1(v) + [dk+1(u) or 0] - dk(u) - [dk(v) or 0]

≤ dk+1(v) + dk+1(u) - dk(u) = dk+1(v) ≤ n.

Let SAT be the number of saturating pushes.

Consider the case that the k-th

step is a saturating push.
dk+1 = dk

The contribution of saturating pushes to gains in

potential is at most n (SAT) ≤ n2m.

30

Bounds on δk

Φk = ∑j ∈ Active(k) dk(j)

Φk+1 = ∑j ∈ Active(k+1) dk+1(j).

δk = Φk+1 - Φk = dk+1(v) - dk(v) = w.

But each node can increase its distance by at most n.

Consider the case that the
k-th step is an increase
of d(v) by w.

The contribution of distance label increases to gains in

potential is at most n per node and at most n2 in all.

After step k

j ek+1(j) =

ek(j)

dk+1(j) =

dk(j) + w

j

Before step k

ek(j

)
dk(j)

31

Bounding NSAT

Losses = Initial Potential + Gains - Final Potential

Φk = ∑j ∈ Active(k) dk(j)

NSAT ≤ Losses

Initial Potential ≤ n2

Gains ≤ n2m + n2

Final Potential ≥ 0

NSAT ≤ n2 + n2m + n2 - 0 = O(n2m)

32

Research notes on preflow push

 Pushing from the active node with the largest distance

label leads to O(n2 m.5) nonsat pushes.

 A very efficient data structure called dynamic trees

reduces the running time to O(nm log n2/m). Goldberg-

Tarjan (1986)

 The “excess scaling technique” of Ahuja and Orlin (1989)

reduced the running time to O(nm + n2 log U).

 Ahuja, Orlin, and Tarjan (1989): further very small

improvements.

 Goldberg and Rao (1998). An even more efficient

algorithm for max flows.

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

