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Lagrangian Relaxation and Inequality Constraints

z* = Min   cx

subject to Ax ≤ b, (P*)

x ∈ X.

L(μ) = Min cx + μ(Ax - b) (P*(μ))

subject to        x ∈ X, 

Lemma.   L(μ) ≤ z* for μ ≥ 0.  

The Lagrange Multiplier Problem:    maximize (L(μ) : μ ≥ 0).

Suppose L* denotes the optimal objective value, and suppose x is 

feasible for P* and μ ≥ 0.  Then  L(μ) ≤ L* ≤ z* ≤ cx.
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Lagrangian Relaxation and Equality Constraints

z* = Min   cx

subject to Ax = b, (P*)

x ∈ X.

L(μ) = Min cx + μ(Ax - b) (P*(μ))

subject to        x ∈ X, 

Lemma.   L(μ) ≤ z* for all μ ∈ Rn

The Lagrange Multiplier Problem:    maximize (L(μ) : μ ∈ Rn ).

Suppose L* denotes the optimal objective value, and suppose x is 

feasible for P* and μ ≥ 0.  Then  L(μ) ≤ L* ≤ z* ≤ cx.



4

Generalized assignment problem  ex. 16.8 

Ross and Soland [1975]

aij = the amount of 

processing time of 

job i on machine j

Set I of 

jobs

Set J of 

machines

1

2

3

4

5

1

2

3

4

xij = 1 if job i is processed 

on machine j

= 0  otherwise

Job i gets processed.        

Machine j has at most dj

units of processing
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Generalized assignment problem  ex. 16.8 

Ross and Soland [1975]

Generalized flow with integer constraints.

ij iji I j J
c x

  Minimize (16.10a)

1                  for each 
ijj J

x i I


  (16.10b)

             for each 
ij ij ji I

a x d j J


  (16.10c)

0  and integer      for all ( , )
ij

x i j A  (16.10d)

Class exercise: write two different Lagrangian relaxations.
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Facility Location Problem  ex. 16.9

Erlenkotter 1978

Consider a set J of potential facilities

• Opening facility j ∈ J incurs a cost Fj.

• The capacity of facility j is Kj.

Consider a set I of customers that must be served

• The total demand of customer i is di. 

• Serving one unit of customer i’s from location j 

costs cij.

customer

potential facility
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A pictorial representation
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A possible solution
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Class Exercise

Formulate the facility location problem as an 

integer program.  Assume that a customer can be 

served by more than one facility.

Suggest a way that Lagrangian Relaxation can be 

used to help solve this problem.

Let xij be the amount of demand of 

customer i served by facility j.

Let yj be 1 if facility j is opened, and 0 otherwise. 
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The facility location model

Minimize    
ij ij j j

i I j J j J

c x F y
  

 

subject to    1        
ij

j J

x


 for all i I

i ij j j

i I

d x K y


 for all j J

0 1
ij

x  for all    and  i I j J 

0 or 1
j

y  for all j J



Solving the Lagrangian Multiplier Problem

Approach 1:  represent the LP feasible region as 

the convex combination of corner points.  Then 

use a constraint generation approach.

Approach 2:  subgradient optimization

11
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The Constrained Shortest Path Problem

(1,10)

(1,1)

(1,7)(2,3)

(10,3)

(12,3)

(2,2)

(1,2) (10,1)

(5,7)
1

2 4

53

6

Find the shortest path from node 1 to node 6 

with a transit time at most 14.
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Constrained Shortest Paths: Path Formulation

Given:  a network G = (N,A)

cij cost for arc (i,j)

c(P) cost of path P

tij traversal time for arc (i,j)

T upper bound on transit times.

t(P) traversal time for path P

P set of paths from node 1 to node n 

Min c(P)

s.t. t(P) ≤ T

P ∈ P

L(μ) = Min c(P) + μ t(P) - μT

s.t. P ∈ P

Constrained Problem
Lagrangian



The Lagrangian Multiplier Problem
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L(μ) = Min c(P) + μ t(P) - μT

s.t. P ∈ P

L(μ) = Max w

s.t   w ≤  c(P) + μ t(P) – μT

for all P ∈ P

Step 1.  Rewrite as 

a maximization 

problem

Step 0.  Formulate 

the Lagrangian 

Problem.

Step 2.  Write the 

Lagrangian 

multiplier problem

L* = max {L(μ): μ ≥ 0} = 

=     Max w

s.t   w ≤  c(P) + μ t(P) – μT

for all P ∈ P

μ ≥ 0
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Figure 16.3   The Lagrangian function  for T = 14.
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L* = max (L(μ): μ ≥ 0)

Max { w:  w ≤  c(P) + μ t(P) – μT ∀P ∈ P, 

and μ ≥ 0} 



The Restricted Lagrangian
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P :  the set of paths from node 1 to node n

S ⊆ P :  a subset of paths

L* = max w

s.t   w ≤  c(P) + μ t(P) –T

for all P ∈ P

μ ≥ 0

L*
S = max w

s.t   w ≤  c(P) + μ t(P) – μT

for all P ∈ S

μ ≥ 0

Lagrangian Multiplier Problem Restricted Lagrangian  

Multiplier Problem

L(μ) ≤  L* ≤  L*
S

If L(μ) = L*
S then L(μ) =  L*.

Optimality Conditions



Constraint Generation for Finding L*
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Let Path(μ) be the path that optimizes the Lagrangian.

Let Multiplier(S) be the value of μ that optimizes LS(μ).

Initialize:    

S := {Path(0), Path(M)}

μ := Multiplier(S),    

Is L(μ) = L*S? 

S := S ∪ Path(μ)    

Quit.    L(μ) = L*
Yes

No

M is some large number
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We start with the paths 1-2-4-6, and 1-3-5-6 

which are optimal for L(0) and L(∞).

1-3-5-6 24 + 8 μ

(2.1, 40.8)
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Set μ = 2.1 and solve the constrained 

shortest path problem

22

3.2

15.78.3

16.3

18.3

6.2

5.2 12.1

19.7
1

2 4

53

6

The optimum 

path is 1-3-2-5-6

15 + 10 μ
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1-3-5-6

Path(2.1) = 1-3-2-5-6.  Add it to S and reoptimize.

3 + 4 μ

24 - 6 μ
1-3-2-5-6 15 - 4 μ

1.5, 9
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6

Set μ = 1.5 and solve the constrained 

shortest path problem

The optimum 

path is 1-2-5-6.
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1-3-5-6

Add Path 1-2-5-6 and reoptimize 

3 + 4 μ

24 - 6 μ
1-3-2-5-6 15 - 4 μ

1-2-5-6 5 + μ

2, 7
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Set μ = 2 and solve the constrained 

shortest path problem

The optimum 

paths are 

1-2-5-6 and

1-3-2-5-6
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1-3-5-6

There are no new paths to add.  

μ* is optimal for the multiplier problem

3 + 4 μ

24 - 6 μ
1-3-2-5-6 15 - 4 μ

1-2-5-6 5 + μ

2, 7



Where did the name Gatorade come from?

The drink was developed in 1965 for the Florida Gators 

football team.  The team credits in 1967 Orange Bowl victory to 

Gatorade.

What percentage of people in the world have never made or 

received a phone call?

50%

What causes the odor of natural gas?

Natural gas has no odor.   They add the smell artificially to 

make leaks easy to detect.

Mental Break

25



What is the most abundant metal in the earth’s crust?

Aluminum

How fast are the fastest shooting stars?

Around 150,000 miles per hour.

The Malaysian government banned car commercials starring 

Brad Pit.  What was their reason for doing so?

Brad Pitt was not sufficiently Asian looking.  Using a 

Caucasian such as Brad was considered “an insult to 

Asians.”

Mental Break
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Towards a general theory

Next:  a way of generalizing Lagrangian Relaxation 

for the time constrained shortest path problem to 

LPs in general.

Key fact:   bounded LPs are optimized at extreme 

points.

27



Extreme Points and Optimization

Paths  ⇔ Extreme Points

Optimizing over paths ⇔ Optimizing over extreme points

28

If an LP region is 

bounded, then there is a 

minimum cost solution 

that occurs at an 

extreme (corner) point) 
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Convex Hulls and Optimization:

The convex hull of a set X 

of points is the smallest LP 

feasible region that 

contains all points of X.  

The convex hull will be 

denoted as H(X) .

Min     cx

s.t    x ∈ X `
Min     cx

s.t.    x ∈ H(X) 
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Convex Hulls and Optimization:

Let S = {x : Ax = b, x ≥ 0}.

Suppose that S has a 

bounded feasible region.

Let Extreme(S) be the set 

of extreme points of S.

`

Min     cx

s.t.    x ∈ Extreme(S) 

Min     cx

s.t    Ax = b

x ≥ 0
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Convex Hulls

Suppose that X = {x1, x2, …, xK} is a finite set.

Vector y is a convex combination of  X = {x1, x2, …, xK} 

if there is a feasible solution to

1
1

K

kk





0  for 1 to K
k

k  

The convex hull of X is H(X) = { x : x can be 

expressed as a convex combination of points in X.}
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Lagrangian Relaxation and 

Inequality Constraints

z* = min   cx

subject to Ax ≤ b, (P)

x ∈ X.

L(μ) = min cx + μ(Ax - b) (P(μ))

subject to        x ∈ X.

L* = max (L(μ) : μ ≥ 0).

So we want to maximize over μ, while we are minimizing 

over x.  
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An alternative representation

Suppose that X = {x1, x2, x3, …, xK}.  Possibly K is 

exponentially large; e.g., X is the set of paths from 

node s to node t.

L(μ) = min        cx + μ(Ax - b) = (c + μA)x - μb

subject to        x ∈ X.

L(μ) = min  {(c + μA)xk - μb : k = 1 to K}

L(μ) = max  w

s.t.    w  ≤  (c + μA)xk - μb  for all  k
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The Lagrange Multiplier Problem

L* = max    w

s.t.      w  ≤  (c + A)xk - μb for all k ∈ [1,K]

μ ∈ Rn

L*S(μ) = max    w

s.t.      w  ≤  (c + μA)xk - μb for all k ∈ S

Suppose that S ⊆ [1,K]

For a fixed value μ

L*S = max    w

s.t.      w  ≤  (c + μA)xk - μb for all k ∈ S

μ ∈ Rn



Constraint Generation for Finding L*
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Suppose that  Extreme(μ) optimizes the Lagrangian.

Let Multiplier(S) be the value of μ that optimizes LS(μ).

μ := Multiplier(S),    

Is L(μ) = L*S? 

S := S ∪ Extreme(μ)    

Quit.    L(μ) = L*
Yes

No

Initialize with a set S of 

extreme points of X.    
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Figure 16.3   The Lagrangian function  for T = 14.
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L* = max (L(μ): μ ≥ 0)
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We start with the paths 1-2-4-6, and 1-3-5-6 

which are optimal for L(0) and L(μ).

1-3-5-6 24 + 8 μ

2.1, 40.8



1-2-4-6

Paths

0 1 2 3 4 5
Lagrange Multiplier μ

0

10

20

30

-10

C
o

m
p

o
s

it
e
 C

o
s
t 

38

1-3-5-6

Add Path 1-3-2-5-6 and reoptimize 

3 + 4 μ

24 - 6 μ
1-3-2-5-6 15 - 4 μ

1.5, 9
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1-3-5-6

Add Path 1-2-5-6 and reoptimize 

3 + 4 μ

24 - 6 μ
1-3-2-5-6 15 - 4 μ

1-2-5-6 5 + μ

2, 7
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1-3-5-6

There are no new paths to add.  

μ* is optimal for the multiplier problem

3 + 4 μ

24 - 6 μ
1-3-2-5-6 15 - 4 μ

1-2-5-6 5 + μ

2, 7
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Subgradient optimization

Another major solution technique for solving the 

Lagrange Multiplier Problem is subgradient 

optimization.

Based on ideas from non-linear programming.

It converges (often slowly) to the optimum.

See the textbook for more information.



Application Embedded Network Structure

Networks with side 

constraints

minimum cost flows

shortest paths

Traveling Salesman 

Problem

assignment problem

minimum cost spanning tree

Vehicle routing
assignment problem

variant of min cost spanning tree

Network design shortest paths

Two-duty operator 

scheduling

shortest paths

minimum cost flows

Multi-time

production planning

shortest paths / DPs

minimum cost flows



Interpreting L*

1. For LP’s, L* is the optimum value for the LP

2. Relation of L* to optimizing over a convex hull

43
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Lagrangian Relaxation applied to LPs

z*  =    min    cx

s.t.     Ax = b

Dx = d

x ≥ 0

L(μ) =   min    cx + μ(Ax – b)

s.t.     Dx = d

x ≥ 0

LP(μ)

LP

L* =   max    L(μ)

s.t.      μ ∈ Rn LMP

Theorem 16.6 If -∞ < z* < ∞, then L* = z*.



On the Lagrange Multiplier Problem
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Theorem 16.6 If -∞ < z* < ∞, then L* = z*.

Does this mean that solving the Lagrange 

Multiplier Problem solves the original LP?

No!  It just means that the two optimum 

objective values are the same.  

Sometimes it is MUCH easier to solve the 

Lagrangian problem, and getting an 

approximation to L* is also fast.
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Property 16.7

1. The set H(X) is a polyhedron, that is, it can be 

expressed as H(X) = {x : Ax ≤ b} for some matrix A 

and vector b.

2. Each extreme point of H(X) is in X.  If we minimize 

{cx : x ∈ H(X)}, the optimum solution lies in X.

3. Suppose X ⊆ Y = {x : Dx ≤ c and x ≥ 0}.  

Then H(X) ⊆ Y.
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Relationships concerning LPs

z* =    Min     cx

s.t    Ax = b

x ∈ X 

v* =    Min     cx

s.t    Ax = b

x ∈ H(X) 

L(μ) =    Min     cx + μ(Ax – b) 

s.t       x ∈ X 

v(μ) =    Min     cx + μ(Ax – b) 

s.t       x ∈ H(X) 

Original Problem X replaced by H(X)

Lagrangian X replaced by H(X)

L(μ) =  v(μ) ≤  v*  ≤  z*   
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max x1

s.t. 

x1 ≤ 6

x ∈ X 

is different from 

max x1

s.t.  

x1 ≤ 6

x ∈ H(X) x1
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Relationships concerning LPs

z* =    Min     cx

s.t    Ax = b

x ∈ X 

v* =    Min     cx

s.t    Ax = b

x ∈ H(X) 

L(μ) =    Min     cx + μ(Ax – b) 

s.t       x ∈ X 

v(μ) =    Min     cx + μ(Ax – b) 

s.t       x ∈ H(X) 

L* =  max {L(μ) : μ ∈ Rn } v* =  max {v(μ) : μ ∈ Rn }

L(μ) =  v(μ) ≤  L* =  v*  ≤  z*   

Theorem 16.8. L* = v*.
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Illustration

min - x1

s.t. 

x1 ≤ 6

x ∈ H(X) 

Lagrangian

min  - x1 + μ(x1 – 6)

= (μ-1)x1 - 6μ

s.t.      x ∈ X 
x16 111

L(μ) =   (μ-1) - 6μ = -5μ -1        if μ ≥ 1   

L(μ) = 11(μ-1) - 6μ =  5μ -11      if μ ≤ 1   
L* = -6
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Integrality Property

Fact:  The LP region for min cost flow problems has 

the integrality property.

We say that X satisfies if the integrality property if the 

following LP has integer solutions for all d

Suppose X = {x : Dx = q ,  x ≥ 0, x integer}.

Min     dx

s.t    x ∈ X 
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Integrality Property

Let X = {x : Dx = q   x ≥ 0, x integer}. 

z* =    Min     cx

s.t    Ax = b

x ∈ X 

L(μ) =    Min     cx + μ(Ax – b) 

s.t       x ∈ X 

zLP =  min     cx

s.t      Ax = b

Dx = q

x ≥ 0

L* =    Max     L(μ)

s.t       μ ∈ Rn

Theorem 16.10.    If X has the integrality 

property, then zLP = L*.
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Proof of Integrality Property

Suppose X = {x : Dx = q   x ≥ 0, x integer} has the 

integrality property.

L(μ) =    Min     cx + μ(Ax – b) 

s.t       x ∈ X 

L(μ) =    Min     cx + μ(Ax – b) 

s.t      Dx = q

x ≥ 0 

L* =    Max     L(μ)

s.t       μ ∈ Rn

zLP =  min     cx

s.t      Ax = b

Dx = q

x ≥ 0

zLP = L* by Theorem 16.6.  
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Example:  Generalized Assignment

ij iji I j J
c x

  Minimize (16.10a)

1                  for each 
ijj J

x i I


  (16.10b)

             for each 
ij ij ji I

a x d j J


  (16.10c)

0  and integer      for all ( , )
ij

x i j A  (16.10d)

If we relax (16.10c), the bound for the Lagrangian multiplier 

problem is the same as the bound for the LP relaxation.

If we relax (16.10b), the LP does not satisfy the integrality 

property, and we should get a better bound than z0.
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Summary

A decomposition approach for Lagrangian 

Relaxations

Relating Lagrangian Relaxations to LPs
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