15.082J and 6.855J and ESD.78J

Lagrangian Relaxation 2

- Applications
- Algorithms
- Theory

Lagrangian Relaxation and Inequality Constraints

z * =	Min	СХ	
	subject to	$Ax \leq b$,	(P [*])
	x ∈ >	ζ.	
L(µ) =	Min cx +	μ(Ax - b)	(P [*] (µ))
	subject to	x ∈ X,	

Lemma. $L(\mu) \leq z^*$ for $\mu \geq 0$.

<u>The Lagrange Multiplier Problem</u>: maximize (L(μ) : $\mu \ge 0$).

Suppose L* denotes the optimal objective value, and suppose x is feasible for P^{*} and $\mu \ge 0$. Then $L(\mu) \le L^* \le z^* \le cx$.

Lagrangian Relaxation and Equality Constraints

z * =	Min	СХ	
	subject to	$A\mathbf{x} = \mathbf{b},$	(P [*])
	x e X	ζ.	
L(µ) =	Min cx +	μ(Ax - b)	(P [*] (µ))
	subject to	x∈X,	

Lemma. $L(\mu) \leq \mathbf{Z}^*$ for all $\mu \in \mathbb{R}^n$

<u>The Lagrange Multiplier Problem</u>: maximize (L(μ) : $\mu \in \mathbb{R}^n$).

Suppose L* denotes the optimal objective value, and suppose x is feasible for P^{*} and $\mu \ge 0$. Then $L(\mu) \le L^* \le z^* \le cx$.

Generalized assignment problem ex. 16.8 Ross and Soland [1975]

Set I of jobs

Set J of machines

a_{ij} = the amount of processing time of job i on machine j

x_{ij} = 1 if job i is processed on machine j = 0 otherwise

Job i gets processed.

Machine j has at most d_j units of processing

Generalized assignment problem ex. 16.8 Ross and Soland [1975]

Minimize

$$\sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij}$$
 (16.10a)

$$\sum_{j \in J} x_{ij} = 1 \qquad \text{for each } i \in I \qquad (16.10b)$$

$$\sum_{i \in I} a_{ij} x_{ij} \le d_j \qquad \text{for each } j \in J \qquad (16.10c)$$

 $x_{ij} \ge 0$ and integer for all $(i, j) \in A$ (16.10d)

Generalized flow with integer constraints.

Class exercise: write two different Lagrangian relaxations.

Facility Location Problem ex. 16.9 Erlenkotter 1978

Consider a set J of potential facilities

- Opening facility $j \in J$ incurs a cost F_{i} .
- The capacity of facility j is K_i.

Consider a set I of customers that must be served

- The total demand of customer i is d_i.
- Serving one unit of customer i's from location j costs c_{ij}.

A pictorial representation

A possible solution

Class Exercise

Formulate the facility location problem as an integer program. Assume that a customer can be served by more than one facility.

Suggest a way that Lagrangian Relaxation can be used to help solve this problem.

Let x_{ij} be the amount of demand of customer i served by facility j.

Let y_i be 1 if facility j is opened, and 0 otherwise.

The facility location model

Minimize
$$\sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} + \sum_{j \in J} F_j y_j$$
subject to
$$\sum_{j \in J} x_{ij} = 1$$
for all $i \in I$
$$\sum_{i \in I} d_i x_{ij} \leq K_j y_j$$
for all $j \in J$
$$0 \leq x_{ij} \leq 1$$
for all $i \in I$ and $j \in J$ $y_j = 0$ or 1for all $j \in J$

Solving the Lagrangian Multiplier Problem

Approach 1: represent the LP feasible region as the convex combination of corner points. Then use a constraint generation approach.

Approach 2: subgradient optimization

The Constrained Shortest Path Problem

Find the shortest path from node 1 to node 6 with a transit time at most 14.

Constrained Shortest Paths: Path Formulation

Given:	a networ	k G = ((N,A)
--------	----------	---------	-------

- **c**_{ij} cost for arc (i,j)
- c(P) cost of path P
- traversal time for arc (i,j)
- T upper bound on transit times.
- t(P) traversal time for path P
- P set of paths from node 1 to node n

Min	c(P)
s.t.	t(P) ≤ T
	P∈ P

Constrained Problem

$$L(\mu) = Min \quad c(P) + \mu t(P) - \mu T$$

s.t. $P \in \mathbf{P}$

Lagrangian

The Lagrangian Multiplier Problem

Step 0. Formulate the Lagrangian Problem.

Step 1. Rewrite as a maximization problem

Step 2. Write the Lagrangian multiplier problem

$$L(\mu) = Min \quad c(P) + \mu t(P) - \mu T$$

s.t. $P \in \mathbf{P}$

$$L(\mu) = Max w$$

s.t w \leq c(P) + μ t(P) - μ T
for all P \in **P**

$$L^* = \max \{L(\mu): \mu \ge 0\} =$$

= Max w

for all $P \in \mathbf{P}$

Max { w: $w \le c(P) + \mu t(P) - \mu T \forall P \in \mathbf{P}$, and $\mu \ge 0$ }

15

The Restricted Lagrangian

P : the set of paths from node 1 to node n **S** \subseteq **P** : a subset of paths

Constraint Generation for Finding L*

Let Path(µ) be the path that optimizes the Lagrangian.

Let Multiplier(S) be the value of μ that optimizes L_s(μ).

M is some large number

We start with the paths 1-2-4-6, and 1-3-5-6 which are optimal for L(0) and L(∞).

Set µ = 2.1 and solve the constrained shortest path problem

Path(2.1) = 1-3-2-5-6. Add it to S and reoptimize.

20

Set µ = 1.5 and solve the constrained shortest path problem

Add Path 1-2-5-6 and reoptimize

Set µ = 2 and solve the constrained shortest path problem

There are no new paths to add. <u>µ* is optimal for the multiplier problem</u>

Mental Break

Where did the name Gatorade come from?

- The drink was developed in 1965 for the Florida Gators football team. The team credits in 1967 Orange Bowl victory to Gatorade.
- What percentage of people in the world have never made or received a phone call?
 - **50%**
- What causes the odor of natural gas?
- Natural gas has no odor. They add the smell artificially to make leaks easy to detect.

Mental Break

What is the most abundant metal in the earth's crust? Aluminum

How fast are the fastest shooting stars? Around 150,000 miles per hour.

The Malaysian government banned car commercials starring Brad Pit. What was their reason for doing so? Brad Pitt was not sufficiently Asian looking. Using a Caucasian such as Brad was considered "an insult to Asians."

Towards a general theory

Next: a way of generalizing Lagrangian Relaxation for the time constrained shortest path problem to LPs in general.

Key fact: bounded LPs are optimized at extreme points.

Extreme Points and Optimization

Paths ⇔ Extreme Points

Optimizing over paths ⇔ Optimizing over extreme points

If an LP region is bounded, then there is a minimum cost solution that occurs at an extreme (corner) point)

Convex Hulls and Optimization:

The convex hull of a set X of points is the smallest LP feasible region that contains all points of X. The convex hull will be denoted as H(X).

Convex Hulls and Optimization:

Let $S = \{x : Ax = b, x \ge 0\}.$

Suppose that S has a bounded feasible region.

Let Extreme(S) be the set of extreme points of S.

Convex Hulls

Suppose that $X = \{x^1, x^2, ..., x^K\}$ is a finite set.

Vector y is a *convex combination* of $X = \{x^1, x^2, ..., x^K\}$ if there is a feasible solution to

$$y = \sum_{k=1}^{K} \lambda_k x^k$$
$$\sum_{k=1}^{K} \lambda_k = 1$$
$$\lambda_k \ge 0 \text{ for } k = 1 \text{ to K}$$

The <u>convex hull</u> of X is H(X) = { x : x can be expressed as a convex combination of points in X.}

Lagrangian Relaxation and Inequality Constraints

Z [*]	=	min	СХ	
		subject to	$Ax \leq b$,	(P)
			x ∈ X.	

- $L(\mu) = \min cx + \mu(Ax b) \qquad (P(\mu))$ subject to $x \in X$.
- $L^* = \max(L(\mu) : \mu \ge 0).$

So we want to maximize over µ, while we are minimizing over x.

An alternative representation

Suppose that $X = \{x^1, x^2, x^3, ..., x^K\}$. Possibly K is exponentially large; e.g., X is the set of paths from node s to node t.

 $L(\mu) = \min cx + \mu(Ax - b) = (c + \mu A)x - \mu b$ subject to $x \in X$.

 $L(\mu) = \min \{(c + \mu A)x^k - \mu b : k = 1 \text{ to } K\}$

L(µ)	=	max	W
		s.t.	$w \leq (c + \mu A)x^k - \mu b$ for all k

The Lagrange Multiplier Problem

L*	=	max	W
		s.t.	$w \leq (c + A)x^k - \mu b$ for all $k \in [1,K]$
			µ ∈ R ⁿ

Suppose that $S \subseteq [1,K]$

	For a fixed value µ			
L* _s (μ) =	max w			
	s.t. w ≤ (c ·	⊦ μA)x ^k - μb for all k ∈ S		
L* _s =	max w			
	s.t. w ≤ (c ·	+ μA)x ^k - μb for all k ∈ S		
	µ ∈ R ⁿ			

Constraint Generation for Finding L*

Suppose that Extreme(µ) optimizes the Lagrangian.

Let Multiplier(S) be the value of μ that optimizes L_s(μ).

We start with the paths 1-2-4-6, and 1-3-5-6 which are optimal for L(0) and L(µ).

Add Path 1-3-2-5-6 and reoptimize

38

Add Path 1-2-5-6 and reoptimize

There are no new paths to add. µ* is optimal for the multiplier problem

40

Subgradient optimization

Another major solution technique for solving the Lagrange Multiplier Problem is subgradient optimization.

Based on ideas from non-linear programming.

It converges (often slowly) to the optimum.

See the textbook for more information.

Application	Embedded Network Structure
Networks with side constraints	minimum cost flows shortest paths
Traveling Salesman Problem	assignment problem minimum cost spanning tree
Vehicle routing	assignment problem variant of min cost spanning tree
Network design	shortest paths
Two-duty operator scheduling	shortest paths minimum cost flows
Multi-time production planning	shortest paths / DPs minimum cost flows

Interpreting L*

- **1.** For LP's, L* is the optimum value for the LP
- 2. Relation of L* to optimizing over a convex hull

Lagrangian Relaxation applied to LPs

z * =	min	СХ	
	s.t.	Ax = b	LP
		$\mathbf{D}\mathbf{x} = \mathbf{d}$	
		x ≥ 0	
L(u) =	min	cx + u(Ax - b)	
-(~)	s.t.	Dx = d	LP(μ)
		x ≥ 0	
L* = 1	max	L(μ)	
	s.t.	µ ∈ R ⁿ	LMP

Theorem 16.6 If $-\infty < z^* < \infty$, then $L^* = z^*$.

On the Lagrange Multiplier Problem

Theorem 16.6 If
$$-\infty < z^* < \infty$$
, then L* = z*.

Does this mean that solving the Lagrange Multiplier Problem solves the original LP?

No! It just means that the two optimum objective values are the same.

Sometimes it is MUCH easier to solve the Lagrangian problem, and getting an approximation to L* is also fast.

- The set H(X) is a polyhedron, that is, it can be expressed as H(X) = {x : Ax ≤ b} for some matrix A and vector b.
- 2. Each extreme point of H(X) is in X. If we minimize $\{cx : x \in H(X)\}$, the optimum solution lies in X.
- 3. Suppose $X \subseteq Y = \{x : Dx \le c \text{ and } x \ge 0\}$. Then $H(X) \subseteq Y$.

Relationships concerning LPs

$$\begin{array}{ccccc} z^{*} = & \text{Min} & cx & & & \\ & s.t & Ax = b & & \\ & x \in X & & \\ \end{array} \\ \hline \textbf{Original Problem} & & \textbf{X replaced by H(X)} \\ L(\mu) = & \text{Min} & cx + \mu(Ax - b) & & \\ & s.t & x \in X & & \\ \hline \textbf{Lagrangian} & & \textbf{X replaced by H(X)} \end{array}$$

$$L(\mu) = v(\mu) \leq v^* \leq z^*$$

 $max x_1$
s.t.
 $x_1 \le 6$
 $x \in X$

is different from

 $max x_1$ s.t. $x_1 \le 6$ $x \in H(X)$

Relationships concerning LPs

$$\begin{array}{ccccc} z^{*} = & \text{Min } & cx \\ & s.t & Ax = b \\ & x \in X \end{array} & & \begin{array}{c} v^{*} = & \text{Min } & cx \\ & s.t & Ax = b \\ & x \in H(X) \end{array} \\ \hline \\ L(\mu) = & \text{Min } & cx + \mu(Ax - b) \\ & s.t & x \in X \end{array} & & \begin{array}{c} v(\mu) = & \text{Min } & cx + \mu(Ax - b) \\ & s.t & x \in H(X) \end{array} \\ \hline \\ L^{*} = & \max \left\{ L(\mu) : \mu \in \mathbb{R}^{n} \right\} \end{array} & \begin{array}{c} v^{*} = & \max \left\{ v(\mu) : \mu \in \mathbb{R}^{n} \right\} \end{array}$$

$$L(\mu) = v(\mu) \leq L^* = v^* \leq z^*$$

<u>Theorem 16.8.</u> L* = v*.

Illustration

Suppose $X = \{x : Dx = q, x \ge 0, x \text{ integer}\}$.

We say that X satisfies if the *integrality property* if the following LP has integer solutions for all d

Fact: The LP region for min cost flow problems has the integrality property.

Let $X = \{x : Dx = q \mid x \ge 0, x \text{ integer}\}$.

z * =	Min cx		z _{LP} = min	СХ
	s.t Ax = b		s.t	Ax = b
	x ∈ X			Dx = q
				x ≥ 0
		_		
L(μ) =	Min $cx + \mu(Ax - b)$		L* = Max	L(μ)
	s.t x ∈ X		s.t	μ ∈ R ⁿ

Theorem 16.10. If X has the integrality property, then $z_{LP} = L^*$.

Proof of Integrality Property

Suppose $X = \{x : Dx = q | x \ge 0, x \text{ integer}\}$ has the integrality property.

$$L(\mu) = Min \quad cx + \mu(Ax - b)$$

s.t $x \in X$

$$L(\mu) = Min \quad cx + \mu(Ax - b)$$

s.t
$$Dx = q$$

$$x \ge 0$$

$$z_{LP} = L^*$$
 by Theorem 16.6.

Example: Generalized Assignment

Minimize

$$\sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij}$$
 (16.10a)

$$\sum_{j \in J} x_{ij} = 1 \qquad \text{for each } i \in I \qquad (16.10b)$$

$$\sum_{i \in I} a_{ij} x_{ij} \le d_j \qquad \text{for each } j \in J \qquad (16.10c)$$

 $x_{ij} \ge 0$ and integer for all $(i, j) \in A$ (16.10d)

If we relax (16.10c), the bound for the Lagrangian multiplier problem is the same as the bound for the LP relaxation.

If we relax (16.10b), the LP does not satisfy the integrality property, and we should get a better bound than z⁰.

Summary

 A decomposition approach for Lagrangian Relaxations

Relating Lagrangian Relaxations to LPs

15.082J / 6.855J / ESD.78J Network Optimization Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.