15.083: Integer Programming and Combinatorial Optimization Midterm Exam

10/26/2009

Problem (1) (50 pts) Indicate whether the following italicized statements are true or false. Provide a supporting argument and/or short proof.
(a) [5 pts] Consider the problem max $\sum_{j=1}^{n} c_{j}\left|x_{j}\right|$ subject to $\sum_{j=1}^{n} a_{j}\left|x_{j}\right| \leq b$.
[$\mathbf{T} / \mathbf{F}]:$ The problem can be modeled as a linear integer optimization problem.
(b) [5 pts] Let (N, \mathcal{F}) be a matroid with associated rank function $r(\cdot)$.
$[\mathbf{T} / \mathbf{F}]:$ For all pairs of sets $T_{1}, T_{2} \subset N$ with $\left|T_{1}\right|=\left|T_{2}\right|$, we have $r\left(T_{1}\right)=r\left(T_{2}\right)$.
(c) [5 pts] Let $x^{*} \in \mathbb{R}^{n}$ be an optimal solution to $Z_{L P}=\min _{A y \leq b} c^{T} y$ and let $x \in \mathbb{Z}^{n}: A x \leq b$ be a solution obtained from x^{*} by a randomized rounding procedure. Suppose $E\left[c^{\prime} x\right]=c^{\prime} x^{*}=Z_{L P}$.
$[\mathbf{T} / \mathbf{F}]:$ It is possible that $E\left[\left(c^{\prime} x-Z_{L P}\right)^{2}\right]>0$.
(d) [5 pts] Let $P=\left\{x \in \mathbb{R}^{7} \mid A x=b, f^{\prime} x \geq d\right\}$ be a polyhderon with $\operatorname{rank}(A)=3$, in which the inequality $f^{\prime} x \geq d$ defines a face of dimension 3 .
$[\mathbf{T} / \mathbf{F}]:$ The inequality $f^{\prime} x \geq d$ can be deleted from P.
(e) [8 pts] Let $N=\{1, \ldots, n\}$. Consider the knapsack polytope $P_{K N}=\operatorname{conv}\left\{x \in\{0,1\}^{n}: \sum_{i=1}^{n} w_{i} x_{i} \leq b\right\}$.

Suppose we identify a minimal cover $C \subseteq N$ with the following properties:

- $\sum_{i \in C} w_{i}>b$
- $\forall j \in C: \sum_{i \in C: i \neq j} w_{i} \leq b$
- $\sum_{i \in C} w_{i}+\max \left\{w_{j}: j \in N \backslash C\right\}-\max \left\{w_{i}: i \in C\right\} \leq b$
$[\mathbf{T} / \mathbf{F}]:$ The inequality $\sum_{i \in C} x_{i} \leq|C|-1$ defines a facet of $P_{K N}$.
(f) $[6 \mathrm{pts}]$ Let $\left\{f_{0}, f_{1}, \ldots, f_{m}\right\}$ be nonlinear functions. Consider the binary nonlinear optimization problem:
$Z_{B P}=\min \sum_{i=1}^{n} f_{0}\left(x_{i}\right)$
subject to

$$
\sum_{i=1}^{n} f_{j}\left(x_{i}\right) \leq b_{j}, j=1, \ldots, m
$$

[T/F]: The problem can be reformulated as a linear integer optimization problem.
(g) [5 pts] Suppose we carry out the lift and project method in the variables $\left\{x_{1}, \ldots, x_{k}\right\}$.
$[\mathbf{T} / \mathbf{F}]$: The order of the variables in which we perform the lift and project method may lead to different polyhedra.
(h) [6 pts $]$ Consider the robust optimization problem:

$Z_{R}=\max c^{\prime} x$
subject to
$a^{\prime} x$
x
x

[T/F]:Calculating Z_{R} is NP-hard.
(i) [5 pts] Referring to (h), let $w=e$ (vector of 1's).
[$\mathbf{T} / \mathbf{F}]$: Calculating Z_{R} is polynomially solvable.

Problem (2: A directed cut formulation of MST-25 pts) Given a undirected graph $G=(V, E)$, with $|V|=n$ and $|E|=m$, form a directed graph $D=(V, A)$ by replacing each edge $\{i, j\}$ in E by arcs (i, j) and (j, i) in A. We select a node $r \in V$ as the root node. Let $y_{i j}=1$ if the tree contains arc (i, j) when we root the tree at node r (in other words the solution will be a tree with directed edges away from the root). Let $\delta^{+}(S)$ be the set of arcs going out of S. Define:

$$
\begin{aligned}
P_{d c u t}= & \left\{x \in \mathbb{R}^{m}: 0 \leq x_{e} \leq 1, x_{e}=y_{i j}+y_{j i}, \forall e \in E\right. \\
& \left.\sum_{e \in A} y_{e}=n-1, \sum_{e \in \delta^{+}(S)} y_{e} \geq 1, r \in S, \forall S \subset V, y_{e} \geq 0\right\} \\
P_{s u b}= & \left\{x \in \mathbb{R}^{m}: 0 \leq x_{e} \leq 1, \forall e \in E, \sum_{e \in E} x_{e}=n-1\right. \\
& \left.\sum_{e \in E(S)} x_{e} \leq|S|-1, \forall S \subset V, S \neq \emptyset, V\right\}
\end{aligned}
$$

Prove $P_{d c u t}=P_{s u b}$.
Problem (3: Comparison of relaxations for the TSP-25 pts) Given an undirected graph $G=(V, E)$, consider the following two formulations of the TSP:

		2 $\{0,1\}$	$\begin{aligned} & \forall i \in V \\ & \forall S \subset V, S \neq \emptyset, V \\ & \forall e \in E \end{aligned}$
		$\begin{aligned} & 2 \\ & \|S\|-1 \\ & \{0,1\} \end{aligned}$	$\begin{aligned} & \forall i \in V \\ & \forall S \subset V, S \neq \emptyset, V \\ & \forall e \in E \end{aligned}$

Let $Z_{I P}$ be the common optimal cost of the two formulations. Let Z_{1}, Z_{2} be the optimal cost of the linear relaxation of the two formulations respectively. Let $Z_{D 1}, Z_{D 2}$ be the values of the Lagrangian duals if we relax the constraints $\sum_{e \in \delta(\{i\})} x_{e}=2$ for all $i \neq 1$ in the two formulations. Let $Z_{M S T}$ be the cost of the minimum spanning tree with respect to the edge costs c_{e}. Order the values $Z_{1}, Z_{2}, Z_{I P}, Z_{D 1}, Z_{D 2}, Z_{M S T}$.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

