15.083: Integer Programming and Combinatorial Optimization Midterm Exam

10/26/2009

Problem (1) (50 pts) Indicate whether the following italicized statements are true or false. Provide a supporting argument and/or short proof.

- (a) [5 pts] Consider the problem max $\sum_{j=1}^{n} c_j |x_j|$ subject to $\sum_{j=1}^{n} a_j |x_j| \le b$. $[\mathbf{T}/\mathbf{F}]$: The problem can be modeled as a linear integer optimization problem.
- (b) [5 pts] Let (N, \mathcal{F}) be a matroid with associated rank function $r(\cdot)$. $[\mathbf{T}/\mathbf{F}]$: For all pairs of sets $T_1, T_2 \subset N$ with $|T_1| = |T_2|$, we have $r(T_1) = r(T_2)$.
- (c) [5 pts] Let $x^* \in \mathbb{R}^n$ be an optimal solution to $Z_{LP} = \min_{Ay \leq b} c^T y$ and let $x \in \mathbb{Z}^n : Ax \leq b$ be a solution obtained from x^* by a randomized rounding procedure. Suppose $E[c'x] = c'x^* = Z_{LP}$. $[\mathbf{T}/\mathbf{F}]$: It is possible that $E\left[\left(c'x-Z_{LP}\right)^{2}\right]>0.$
- (d) [5 pts] Let $P = \{x \in \mathbb{R}^7 \mid Ax = b, f'x \ge d\}$ be a polyhderon with rank(A) = 3, in which the inequality $f'x \ge d$ defines a face of dimension 3. $[\mathbf{T}/\mathbf{F}]$: The inequality $f'x \ge d$ can be deleted from P.
- (e) [8 pts] Let $N = \{1, ..., n\}$. Consider the knapsack polytope $P_{KN} = conv\{x \in \{0, 1\}^n : \sum_{i=1}^n w_i x_i \le b\}$. Suppose we identify a minimal cover $C \subseteq N$ with the following properties:

•
$$\sum_{i \in C} w_i > b$$

• $\forall j \in C : \sum_{i \in C: i \neq j} w_i \le b$
•
$$\sum_{i \in C} w_i + \max\{w_j : j \in N \setminus C\} - \max\{w_i : i \in C\} \le b$$

 $[\mathbf{T}/\mathbf{F}]$: The inequality $\sum_{i \in C} x_i \leq |C| - 1$ defines a facet of P_{KN} .

(f) <u>[6 pts] Let $\{f_0, f_1, ..., f_m\}$ be nonlinear functions</u>. Consider the binary nonlinear optimization problem:

 $Z_{BP} = \min \sum_{i=1}^{n} \overline{f_0(x_i)}$ subject to subject to $\sum_{i=1}^{n} f_j(x_i) \leq b_j, \ j = 1, \dots, m$ $x \in \{0, 1\}^n$ [**T**/**F**]: The problem can be reformulated as a linear integer optimization problem.

(g) [5 pts] Suppose we carry out the lift and project method in the variables $\{x_1, ..., x_k\}$. $[\mathbf{T}/\mathbf{F}]$: The order of the variables in which we perform the lift and project method may lead to different polyhedra.

(h) [6 pts] Consider the robust optimization problem:

 $\begin{bmatrix} Z_R = \max c'x \\ \text{subject to} \\ a'x \leq b \quad \forall a \in \{0,1\}^n : w'a \leq B \\ x \geq 0 \\ \end{bmatrix}$ $[\mathbf{T}/\mathbf{F}]: Calculating Z_R \text{ is NP-hard.}$

(i) [5 pts] Referring to (h), let w = e (vector of 1's). [**T**/**F**]:*Calculating* Z_R *is polynomially solvable.*

Problem (2: A directed cut formulation of MST-25 pts) Given a undirected graph G = (V, E), with |V| = n and |E| = m, form a directed graph D = (V, A) by replacing each edge $\{i, j\}$ in E by arcs (i, j) and (j, i) in A. We select a node $r \in V$ as the root node. Let $y_{ij} = 1$ if the tree contains arc (i, j) when we root the tree at node r (in other words the solution will be a tree with directed edges away from the root). Let $\delta^+(S)$ be the set of arcs going out of S. Define:

$$\begin{split} P_{dcut} &= \left\{ x \in \mathbb{R}^m : 0 \le x_e \le 1, x_e = y_{ij} + y_{ji}, \forall e \in E, \\ &\sum_{e \in A} y_e = n - 1, \sum_{e \in \delta^+(S)} y_e \ge 1, r \in S, \forall S \subset V, y_e \ge 0 \right\} \\ P_{sub} &= \left\{ x \in \mathbb{R}^m : 0 \le x_e \le 1, \forall e \in E, \sum_{e \in E} x_e = n - 1 \\ &\sum_{e \in E(S)} x_e \le |S| - 1, \forall S \subset V, S \neq \emptyset, V \right\} \end{split}$$

Prove $P_{dcut} = P_{sub}$.

Problem (3: Comparison of relaxations for the TSP-25 pts) Given an undirected graph G = (V, E), consider the following two formulations of the TSP:

$$\begin{array}{rcl} \min \sum_{e \in E} c_e x_e \\ \text{subject to} \\ 1) & \sum_{e \in \delta(\{i\})} x_e &= 2 & \forall i \in V \\ & \sum_{e \in \delta(S)} x_e &\geq 2 & \forall S \subset V, S \neq \emptyset, V \\ & x_e &\in \{0,1\} \quad \forall e \in E \end{array} \\ \end{array}$$

$$\begin{array}{rcl} \min \sum_{e \in E} c_e x_e \\ \text{subject to} \\ 2) & \sum_{e \in \delta(\{i\})} x_e &= 2 & \forall i \in V \\ & \sum_{e \in E(S)} x_e &\leq |S| - 1 & \forall S \subset V, S \neq \emptyset, V \\ & \sum_{e \in E(S)} x_e &\leq |S| - 1 & \forall S \subset V, S \neq \emptyset, V \\ & x_e &\in \{0,1\} & \forall e \in E \end{array}$$

Let Z_{IP} be the common optimal cost of the two formulations. Let Z_1, Z_2 be the optimal cost of the linear relaxation of the two formulations respectively. Let Z_{D1}, Z_{D2} be the values of the Lagrangian duals if we relax the constraints $\sum_{e \in \delta(\{i\})} x_e = 2$ for all $i \neq 1$ in the two formulations. Let Z_{MST} be the cost of the minimum

spanning tree with respect to the edge costs c_e . Order the values $Z_1, Z_2, Z_{IP}, Z_{D1}, Z_{D2}, Z_{MST}$.

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.